Design and optimization of variable gain LNA for IoT applications using meta-heuristics search algorithms

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Dheeraj Kalra , Mayank Srivastava
{"title":"Design and optimization of variable gain LNA for IoT applications using meta-heuristics search algorithms","authors":"Dheeraj Kalra ,&nbsp;Mayank Srivastava","doi":"10.1016/j.mee.2023.112125","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, Variable Gain LNA (VG-LNA) parameters are optimized using the Particle Swarm Optimization<span> (PSO), Firefly<span> Algorithm (FA), and Genetic Algorithm (GA). A comparison of the three optimization techniques has been done and FA is depicting better results over GA and PSO. VG-LNA is composed of a Complementary Common Gate (CCG) and Variable Gain Amplifier (VGA). G</span></span></span><sub>m</sub><span><span><span>-boost topology helps in increasing the gain while the current reuse technique provides less </span>power consumption. </span>Optimization algorithms simulated on MATLAB and the result shows minimum Noise Fig. (NF) is 2.62 dB, maximum gain is 17.8 dB, S</span><sub>11</sub><span> i.e. input reflection coefficient is −13.5 dB and S</span><sub>22</sub><span> i.e. output reflection coefficient is −14.7 dB at 50 Ω impedance matching while Figure of Merit1 (FoM1) is 36.14 dB using FA. The FA optimized parameters when simulated on Cadence Virtuoso software using GPDK 45 nm CMOS technology for the frequency range of 26–32 GHz then results show a minimum NF of 2.6 dB at 30.9 GHz, maximum gain of 16.9 dB at 30.5 GHz, S</span><sub>11</sub> is −17.7 dB at 30.5 GHz, S<sub>22</sub> is −21.2 dB at 29 GHz and FoM1 of 34.19 dB. The layout of the realized circuit has an area of 231.695 μm*164.48 μm i.e. 0.03811mm<sup>2</sup>.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931723001909","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, Variable Gain LNA (VG-LNA) parameters are optimized using the Particle Swarm Optimization (PSO), Firefly Algorithm (FA), and Genetic Algorithm (GA). A comparison of the three optimization techniques has been done and FA is depicting better results over GA and PSO. VG-LNA is composed of a Complementary Common Gate (CCG) and Variable Gain Amplifier (VGA). Gm-boost topology helps in increasing the gain while the current reuse technique provides less power consumption. Optimization algorithms simulated on MATLAB and the result shows minimum Noise Fig. (NF) is 2.62 dB, maximum gain is 17.8 dB, S11 i.e. input reflection coefficient is −13.5 dB and S22 i.e. output reflection coefficient is −14.7 dB at 50 Ω impedance matching while Figure of Merit1 (FoM1) is 36.14 dB using FA. The FA optimized parameters when simulated on Cadence Virtuoso software using GPDK 45 nm CMOS technology for the frequency range of 26–32 GHz then results show a minimum NF of 2.6 dB at 30.9 GHz, maximum gain of 16.9 dB at 30.5 GHz, S11 is −17.7 dB at 30.5 GHz, S22 is −21.2 dB at 29 GHz and FoM1 of 34.19 dB. The layout of the realized circuit has an area of 231.695 μm*164.48 μm i.e. 0.03811mm2.

Abstract Image

Abstract Image

使用元启发式搜索算法设计和优化物联网应用的可变增益LNA
本文采用粒子群算法(PSO)、萤火虫算法(FA)和遗传算法(GA)对变增益LNA (VG-LNA)参数进行优化。对三种优化技术进行了比较,结果表明,遗传算法比遗传算法和粒子群算法效果更好。VG-LNA由互补共门(CCG)和可变增益放大器(VGA)组成。Gm-boost拓扑有助于提高增益,而当前的重用技术提供了更少的功耗。在MATLAB上对优化算法进行仿真,结果表明,在50 Ω阻抗匹配时,最小噪声图(NF)为2.62 dB,最大增益为17.8 dB, S11即输入反射系数为- 13.5 dB, S22即输出反射系数为- 14.7 dB,而使用FA的Merit1图(FoM1)为36.14 dB。英足总优化参数模拟时节奏大师软件使用GPDK 45 纳米CMOS技术26 - 32 GHz频率范围的结果显示最小NF 2.6 dB 30.9 GHz,最大增益为16.9 dB 30.5 GHz, S11−17.7 dB 30.5 GHz, S22−21.2 后29 34.19 GHz和FoM1 dB。所实现电路的布局面积为231.695 μm*164.48 μm,即0.03811mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信