CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shallu Thakur, Geoffrey Meru
{"title":"CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash","authors":"Shallu Thakur, Geoffrey Meru","doi":"10.1007/s13562-023-00866-w","DOIUrl":null,"url":null,"abstract":"<p>Gene editing using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) system has become an important biotechnological tool for studying gene function and improving crops. In the present study, the potential of the system was assessed for squash (<i>Cucurbita pepo</i> subspecies <i>pepo</i>) by targeting phytoene desaturase (<i>PDS</i>) gene using the particle bombardment method. The recombinant pHSE401 vector, carrying two sgRNAs (<i>gRNA1</i> and <i>gRNA2</i>) specific to the <i>PDS</i> homolog (<i>Cp4.1LG08g06310, CpPDS</i>) under the control of <i>Arabidopsis</i> U6 promoter and the Cas9 protein was developed and bombarded into cotyledonary node explants of squash cv. Black Beauty. The transformation efficiency of 4.5% was observed and all the transformants exhibited albino/bleached phenotype. The <i>CpPDS</i> knockout system generated easily detectable bleached/albino explants within 6–8 weeks. The albino phenotype was confirmed through Sanger sequencing which detected several deletion mutations (single, two and three bp deletion) within the <i>CpPDS-gRNA1</i> target. However, no mutations were found within the <i>CpPDS-gRNA2</i> target. This study demonstrated CRISPR/Cas9 as a viable tool for gene editing in squash and provides a platform for the modification of economically important traits in the crop.</p>","PeriodicalId":16835,"journal":{"name":"Journal of Plant Biochemistry and Biotechnology","volume":"58 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry and Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-023-00866-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Gene editing using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) system has become an important biotechnological tool for studying gene function and improving crops. In the present study, the potential of the system was assessed for squash (Cucurbita pepo subspecies pepo) by targeting phytoene desaturase (PDS) gene using the particle bombardment method. The recombinant pHSE401 vector, carrying two sgRNAs (gRNA1 and gRNA2) specific to the PDS homolog (Cp4.1LG08g06310, CpPDS) under the control of Arabidopsis U6 promoter and the Cas9 protein was developed and bombarded into cotyledonary node explants of squash cv. Black Beauty. The transformation efficiency of 4.5% was observed and all the transformants exhibited albino/bleached phenotype. The CpPDS knockout system generated easily detectable bleached/albino explants within 6–8 weeks. The albino phenotype was confirmed through Sanger sequencing which detected several deletion mutations (single, two and three bp deletion) within the CpPDS-gRNA1 target. However, no mutations were found within the CpPDS-gRNA2 target. This study demonstrated CRISPR/Cas9 as a viable tool for gene editing in squash and provides a platform for the modification of economically important traits in the crop.

Abstract Image

CRISPR/Cas9介导的南瓜植物烯去饱和酶基因编辑
利用聚类规则间隔短回文重复序列/CRISPR-associated 9 (CRISPR/Cas9)系统进行基因编辑已成为研究基因功能和改良作物的重要生物技术工具。本研究利用粒子轰击法,以植物烯去饱和酶(PDS)基因为靶点,对该系统在南瓜(Cucurbita pepo亚种pepo)中的应用潜力进行了评价。重组pHSE401载体在拟南芥U6启动子和Cas9蛋白的调控下,携带PDS同源物(Cp4.1LG08g06310, CpPDS)特异性的两个sgrna (gRNA1和gRNA2),并将其培养到南瓜子叶结外植体中。黑色的美。观察到转化效率为4.5%,所有转化子均呈现白化/漂白表型。CpPDS敲除系统在6-8周内产生易于检测的漂白/白化外植体。通过Sanger测序,在CpPDS-gRNA1靶点内检测到多个缺失突变(单bp、2 bp和3 bp缺失),证实了白化表型。然而,在CpPDS-gRNA2靶点内未发现突变。这项研究证明了CRISPR/Cas9是一种可行的南瓜基因编辑工具,并为修改这种作物的重要经济性状提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Biochemistry and Biotechnology
Journal of Plant Biochemistry and Biotechnology 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: The Journal publishes review articles, research papers, short communications and commentaries in the areas of plant biochemistry, plant molecular biology, microbial and molecular genetics, DNA finger printing, micropropagation, and plant biotechnology including plant genetic engineering, new molecular tools and techniques, genomics & bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信