Junwen Cao, Yikun Hu, Yun Zheng, Wenqiang Zhang, Bo Yu
{"title":"Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis","authors":"Junwen Cao, Yikun Hu, Yun Zheng, Wenqiang Zhang, Bo Yu","doi":"10.1007/s11708-023-0908-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction (NO<span>\n <sup>−</sup><sub>3</sub>\n \n </span> RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for NO<span>\n <sup>−</sup><sub>3</sub>\n \n </span> RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 2","pages":"128 - 140"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0908-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Haber-Bosch process is the most widely used synthetic ammonia technology at present. Since its invention, it has provided an important guarantee for global food security. However, the traditional Haber-Bosch ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. Under the serious pressure of energy and environment, a green, clean, and sustainable ammonia synthesis route is urgently needed. Electrochemical synthesis of ammonia is a green and mild new method for preparing ammonia, which can directly convert nitrogen or nitrate into ammonia using electricity driven by solar, wind, or water energy, without greenhouse gas and toxic gas emissions. Herein, the basic mechanism of the nitrogen reduction reaction (NRR) to ammonia and nitrate reduction reaction (NO−3 RR) to ammonia were discussed. The representative approaches and major technologies, such as lithium mediated electrolysis and solid oxide electrolysis cell (SOEC) electrolysis for NRR, high activity catalyst and advanced electrochemical device fabrication for NO−3 RR and electrochemical ammonia synthesis were summarized. Based on the above discussion and analysis, the main challenges and development directions for electrochemical ammonia synthesis were further proposed.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue