{"title":"Linear fractional self-maps of the unit ball","authors":"Michael R. Pilla","doi":"10.4153/s0008439523000887","DOIUrl":null,"url":null,"abstract":"<p>Determining the range of complex maps plays a fundamental role in the study of several complex variables and operator theory. In particular, one is often interested in determining when a given holomorphic function is a self-map of the unit ball. In this paper, we discuss a class of maps in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231128072208832-0343:S0008439523000887:S0008439523000887_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {C}^N$</span></span></img></span></span> that generalize linear fractional maps. We then proceed to determine precisely when such a map is a self-map of the unit ball. In particular, we take a novel approach, obtaining numerous new results about this class of maps along the way.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"1217 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the range of complex maps plays a fundamental role in the study of several complex variables and operator theory. In particular, one is often interested in determining when a given holomorphic function is a self-map of the unit ball. In this paper, we discuss a class of maps in $\mathbb {C}^N$ that generalize linear fractional maps. We then proceed to determine precisely when such a map is a self-map of the unit ball. In particular, we take a novel approach, obtaining numerous new results about this class of maps along the way.