{"title":"Investigating electromagnetic scattering characteristics based on a nonlinear sea surface","authors":"Xunchao Liu, Hongli Miao, Jiajie Chen","doi":"10.1017/s1759078723001253","DOIUrl":null,"url":null,"abstract":"Establishing a precise electromagnetic scattering model of surfaces is of great significance for comprehending the underlying mechanics of synthetic aperture radar (SAR) imaging. To describe surface electromagnetic scattering more comprehensively, this paper established a nonlinear integral equation model with the Creamer model and bispectrum (IEM-C). Based on the IEM-C model, the effect of parameters, such as radar wave incidence angle, wind speed and direction of sea surfaces, and different polarization modes on the backscattering coefficients of C-band radar waves, was systematically evaluated. The results show that the IEM-C model can characterize both the vertical nonlinear features due to wave interactions and the horizontal nonlinear features due to the wind direction. The sensitivity of the sea surface backscattering coefficient in the IEM-C model to nonlinear effects varies with different incident angles. At the incident angle of 30°, the IEM-C model exhibits the most significant nonlinear effects. The nonlinear effects of the IEM-C model vary under different wind speeds. By comparing with the measured data, it is proved that the IEM-C model is closer to the real sea surface scattering situation than the IEM model.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078723001253","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing a precise electromagnetic scattering model of surfaces is of great significance for comprehending the underlying mechanics of synthetic aperture radar (SAR) imaging. To describe surface electromagnetic scattering more comprehensively, this paper established a nonlinear integral equation model with the Creamer model and bispectrum (IEM-C). Based on the IEM-C model, the effect of parameters, such as radar wave incidence angle, wind speed and direction of sea surfaces, and different polarization modes on the backscattering coefficients of C-band radar waves, was systematically evaluated. The results show that the IEM-C model can characterize both the vertical nonlinear features due to wave interactions and the horizontal nonlinear features due to the wind direction. The sensitivity of the sea surface backscattering coefficient in the IEM-C model to nonlinear effects varies with different incident angles. At the incident angle of 30°, the IEM-C model exhibits the most significant nonlinear effects. The nonlinear effects of the IEM-C model vary under different wind speeds. By comparing with the measured data, it is proved that the IEM-C model is closer to the real sea surface scattering situation than the IEM model.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.