Jinhao Gao , Yu Song , Chenyu Jia , Liyue Sun , Yao Wang , Yanxin Wang , Matt J. Kipper , Linjun Huang , Jianguo Tang
{"title":"A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials","authors":"Jinhao Gao , Yu Song , Chenyu Jia , Liyue Sun , Yao Wang , Yanxin Wang , Matt J. Kipper , Linjun Huang , Jianguo Tang","doi":"10.1016/j.flatc.2023.100594","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) materials, including graphene, have emerged as essential building nanoscale blocks for the development of high-performance membranes. At present, the gas separation membrane market is primarily dominated by polymer membranes. Part of the reason for this is the low production cost, high gas flux, and mechanical flexibility associated with polymer membranes. However, polymer membranes often exhibit relatively short lifespans, low thermal and chemical stability, and low selectivity. In contrast, 2D materials are easily modifiable, functionalizable, and amenable to composite with other materials. This makes them possess better mechanical stability, thermal stability, and higher selectivity. The atom-scale thickness of nanosheets can help to minimize transport resistance and permeation flux. Furthermore, these nanomaterials can form sub-nanometer sieving channels for precise molecular separations, particularly in gas separation applications. Notably, 2D gas separation membranes offer significant advantages over traditional membranes in terms of both permeability and selectivity. However, several challenges hinder the widespread utilization of 2D gas separation membranes. These challenges include the mechanical and long-term stability of membranes under harsh working conditions, difficulties in scalability and the high fabrication costs associated with their production. In this article, we review recent developments of composite membranes containing 2D materials to provide perspective on their application as gas separation membranes. We also provide a critical comparison of different materials for gas separation applications. This paper summarizes the current state of the art of 2D gas separation membranes, including porous graphene, GO, 2D MXene, 2D MOFs, and graphitic carbon nitride. Additionally, it describes their specific applications in CO<sub>2</sub> capture and separation, H<sub>2</sub> separation and purification, and helium extraction from natural gas. Furthermore, the current challenges and future development prospects of 2D material gas separation membranes are discussed.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262723001265","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials, including graphene, have emerged as essential building nanoscale blocks for the development of high-performance membranes. At present, the gas separation membrane market is primarily dominated by polymer membranes. Part of the reason for this is the low production cost, high gas flux, and mechanical flexibility associated with polymer membranes. However, polymer membranes often exhibit relatively short lifespans, low thermal and chemical stability, and low selectivity. In contrast, 2D materials are easily modifiable, functionalizable, and amenable to composite with other materials. This makes them possess better mechanical stability, thermal stability, and higher selectivity. The atom-scale thickness of nanosheets can help to minimize transport resistance and permeation flux. Furthermore, these nanomaterials can form sub-nanometer sieving channels for precise molecular separations, particularly in gas separation applications. Notably, 2D gas separation membranes offer significant advantages over traditional membranes in terms of both permeability and selectivity. However, several challenges hinder the widespread utilization of 2D gas separation membranes. These challenges include the mechanical and long-term stability of membranes under harsh working conditions, difficulties in scalability and the high fabrication costs associated with their production. In this article, we review recent developments of composite membranes containing 2D materials to provide perspective on their application as gas separation membranes. We also provide a critical comparison of different materials for gas separation applications. This paper summarizes the current state of the art of 2D gas separation membranes, including porous graphene, GO, 2D MXene, 2D MOFs, and graphitic carbon nitride. Additionally, it describes their specific applications in CO2 capture and separation, H2 separation and purification, and helium extraction from natural gas. Furthermore, the current challenges and future development prospects of 2D material gas separation membranes are discussed.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)