Optimization of Sputtering Parameters and Their Effect on Structural and Electrical Properties of CAAC-IGZO Thin-Film Transistors

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jae Yu Cho, Jaeseung Jo, Parag R. Patil, Yong Tae Kim, Deok-Yong Cho, Jin Hyeok Kim, Jaeyeong Heo
{"title":"Optimization of Sputtering Parameters and Their Effect on Structural and Electrical Properties of CAAC-IGZO Thin-Film Transistors","authors":"Jae Yu Cho,&nbsp;Jaeseung Jo,&nbsp;Parag R. Patil,&nbsp;Yong Tae Kim,&nbsp;Deok-Yong Cho,&nbsp;Jin Hyeok Kim,&nbsp;Jaeyeong Heo","doi":"10.1007/s13391-023-00472-x","DOIUrl":null,"url":null,"abstract":"<div><p>A c-axis aligned crystalline indium gallium zinc oxide (CAAC-IGZO) possesses unique properties beneficial for thin-film transistors (TFTs). In this study, we investigate the effect of oxygen ratio and radio frequency (RF) power on the structural, electrical, and operational characteristics of CAAC-IGZO thin films. Films were deposited on SiO<sub>2</sub> substrates using an RF sputtering system equipped with a target containing In, Ga, Zn, and O with a composition ratio of 1:1:1:4. The effect of oxygen percentage on the structural characteristics was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM). The oxygen percentage in the film was found to play a crucial role in forming the CAAC-IGZO and orientation of the thin films. With increasing O<sub>2</sub> fraction, the (009)-preferred orientation of the films improved. X-ray absorption spectroscopy also validated the improved orientations of the CAAC-IGZO with high O<sub>2</sub> concentrations up to 70%. In terms of TFT performance, however, the device with 3.3% oxygen exhibited the best performance with a saturation mobility of 10.9 cm<sup>2</sup> V<sup>− 1</sup> s<sup>− 1</sup>. TFT devices were prepared at a low oxygen fraction (10%) with different RF power inputs from 100 to 250 W, where the device prepared with highest power (250 W) showed the best performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"372 - 380"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00472-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A c-axis aligned crystalline indium gallium zinc oxide (CAAC-IGZO) possesses unique properties beneficial for thin-film transistors (TFTs). In this study, we investigate the effect of oxygen ratio and radio frequency (RF) power on the structural, electrical, and operational characteristics of CAAC-IGZO thin films. Films were deposited on SiO2 substrates using an RF sputtering system equipped with a target containing In, Ga, Zn, and O with a composition ratio of 1:1:1:4. The effect of oxygen percentage on the structural characteristics was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM). The oxygen percentage in the film was found to play a crucial role in forming the CAAC-IGZO and orientation of the thin films. With increasing O2 fraction, the (009)-preferred orientation of the films improved. X-ray absorption spectroscopy also validated the improved orientations of the CAAC-IGZO with high O2 concentrations up to 70%. In terms of TFT performance, however, the device with 3.3% oxygen exhibited the best performance with a saturation mobility of 10.9 cm2 V− 1 s− 1. TFT devices were prepared at a low oxygen fraction (10%) with different RF power inputs from 100 to 250 W, where the device prepared with highest power (250 W) showed the best performance.

Graphical Abstract

Abstract Image

Abstract Image

溅射参数优化及其对CAAC-IGZO薄膜晶体管结构和电学性能的影响
一种c轴排列的晶体氧化铟镓锌(CAAC-IGZO)具有独特的性能,有利于薄膜晶体管(TFTs)的应用。在这项研究中,我们研究了氧比和射频功率对CAAC-IGZO薄膜结构、电学和工作特性的影响。在含有In、Ga、Zn和O的靶材(组成比为1:1:1:4)的射频溅射系统中,在SiO2衬底上沉积薄膜。采用x射线衍射(XRD)、透射电子显微镜(TEM)分析了氧含量对结构特性的影响。研究发现,薄膜中的氧含量对CAAC-IGZO的形成和薄膜的取向起着至关重要的作用。随着O2分数的增加,膜的(009)择优取向得到改善。x射线吸收光谱也验证了CAAC-IGZO在高达70%的O2浓度下取向的改善。然而,在TFT性能方面,含氧量为3.3%的器件表现出最佳性能,饱和迁移率为10.9 cm2 V−1 s−1。在低氧分数(10%)条件下,在100 ~ 250 W的不同射频功率输入下制备TFT器件,其中功率最高(250 W)制备的器件表现出最好的性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信