Ji-Zhong Wan , Loïc Pellissier , Chun-Jing Wang , Fei-Hai Yu , Mai-He Li
{"title":"Plant functional composition as an effective surrogate for biodiversity conservation","authors":"Ji-Zhong Wan , Loïc Pellissier , Chun-Jing Wang , Fei-Hai Yu , Mai-He Li","doi":"10.1016/j.baae.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>In biodiversity conservation frameworks, determining surrogates for biodiversity is crucial for improving the effectiveness of biodiversity conservation and management. As plant functional composition can indicate variations in ecosystem functions and services, it could be used as an effective surrogate in biodiversity conservation planning. However, to the best of our knowledge, this metric has been rarely used in biodiversity conservation planning. To explore whether plant functional composition can be used as an effective surrogate for biodiversity conservation, we used a linear mixed regression model to investigate the relationships between plant functional composition (i.e., community-weighted means (CWMs) from the sPlot database) and the species richness of birds, mammals, and amphibians, and between plant functional composition and terrestrial conservation priority ranks (considering biodiversity conservation alone, or biodiversity, carbon, and water conservation together). Thereafter, we quantified the changing trends in these relationships across biomes using the least square method. We found that CWMs significantly affected species richness and terrestrial conservation priority ranks, based on the marginal R<sup>2</sup> and conditional R<sup>2</sup> values from the linear mixed regression model. Further, CWMs significantly affected species richness and terrestrial conservation priority ranks across different biomes of forests and shrublands. However, the nature of these effects (i.e., positive or negative) was dependent on biome type. These results suggest that functional composition can be considered as a biodiversity surrogate for conservation planning, and that biome-specific relationships should be considered.</p></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"74 ","pages":"Pages 49-56"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1439179123000683/pdfft?md5=2c240afa5bba86f989d64a1b38e9cd89&pid=1-s2.0-S1439179123000683-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179123000683","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In biodiversity conservation frameworks, determining surrogates for biodiversity is crucial for improving the effectiveness of biodiversity conservation and management. As plant functional composition can indicate variations in ecosystem functions and services, it could be used as an effective surrogate in biodiversity conservation planning. However, to the best of our knowledge, this metric has been rarely used in biodiversity conservation planning. To explore whether plant functional composition can be used as an effective surrogate for biodiversity conservation, we used a linear mixed regression model to investigate the relationships between plant functional composition (i.e., community-weighted means (CWMs) from the sPlot database) and the species richness of birds, mammals, and amphibians, and between plant functional composition and terrestrial conservation priority ranks (considering biodiversity conservation alone, or biodiversity, carbon, and water conservation together). Thereafter, we quantified the changing trends in these relationships across biomes using the least square method. We found that CWMs significantly affected species richness and terrestrial conservation priority ranks, based on the marginal R2 and conditional R2 values from the linear mixed regression model. Further, CWMs significantly affected species richness and terrestrial conservation priority ranks across different biomes of forests and shrublands. However, the nature of these effects (i.e., positive or negative) was dependent on biome type. These results suggest that functional composition can be considered as a biodiversity surrogate for conservation planning, and that biome-specific relationships should be considered.
期刊介绍:
Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.