Electrical tunability of inorganic tin perovskites enabled by organic modifiers

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Md Azimul Haque, Tong Zhu, Luis Huerta Hernandez, Roba Tounesi, Craig Combe, Bambar Davaasuren, Abdul-Hamid Emwas, F. Pelayo García de Arquer, Edward H. Sargent, Derya Baran
{"title":"Electrical tunability of inorganic tin perovskites enabled by organic modifiers","authors":"Md Azimul Haque, Tong Zhu, Luis Huerta Hernandez, Roba Tounesi, Craig Combe, Bambar Davaasuren, Abdul-Hamid Emwas, F. Pelayo García de Arquer, Edward H. Sargent, Derya Baran","doi":"10.1016/j.xcrp.2023.101703","DOIUrl":null,"url":null,"abstract":"<p>Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI<sub>3</sub>) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"146 ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101703","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI3) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.

Abstract Image

有机改性剂对无机锡钙钛矿电可调性的影响
实现对载流子输运特性的控制是实现高性能电子材料的一个关键方面。在金属卤化物钙钛矿中,它为某些光电应用提供了方便的制造特性和可调性,这是具有挑战性的:钙钛矿结构本身对最大掺杂量构成了基本限制。在这里,我们展示了一种有机改性剂掺入策略,能够在不改变钙钛矿晶格的情况下调制卤化锡钙钛矿中的电子态密度,其方式与传统半导体中的取代掺杂类似。通过将有机小分子和共轭聚合物掺入碘化锡铯(CsSnI3)钙钛矿中,我们实现了载流子密度可调2.7年,从依赖温度的半导体性质转变为金属性质,以及超过200 S/cm的高导电性。我们利用这些可调谐和增强的电子特性来实现薄膜,无铅,热电材料,其接近室温的优点系数为0.21。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信