Deep learning-enabled compact optical trigonometric operator with metasurface

IF 15.7 Q1 OPTICS
Zihan Zhao, Yue Wang, Chunsheng Guan, Kuang Zhang, Qun Wu, Haoyu Li, Jian Liu, Shah Nawaz Burokur, Xumin Ding
{"title":"Deep learning-enabled compact optical trigonometric operator with metasurface","authors":"Zihan Zhao, Yue Wang, Chunsheng Guan, Kuang Zhang, Qun Wu, Haoyu Li, Jian Liu, Shah Nawaz Burokur, Xumin Ding","doi":"10.1186/s43074-022-00062-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a novel strategy based on a metasurface composed of simple and compact unit cells to achieve ultra-high-speed trigonometric operations under specific input values is theoretically and experimentally demonstrated. An electromagnetic wave (EM)-based optical diffractive neural network with only one hidden layer is physically built to perform four trigonometric operations (sine, cosine, tangent, and cotangent functions). Under the unique composite input mode strategy, the designed optical trigonometric operator responds to incident light source modes that represent different trigonometric operations and input values (within one period), and generates correct and clear calculated results in the output layer. Such a wave-based operation is implemented with specific input values, and the proposed concept work may offer breakthrough inspiration to achieve integrable optical computing devices and photonic signal processors with ultra-fast running speeds.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"158 10","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-022-00062-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, a novel strategy based on a metasurface composed of simple and compact unit cells to achieve ultra-high-speed trigonometric operations under specific input values is theoretically and experimentally demonstrated. An electromagnetic wave (EM)-based optical diffractive neural network with only one hidden layer is physically built to perform four trigonometric operations (sine, cosine, tangent, and cotangent functions). Under the unique composite input mode strategy, the designed optical trigonometric operator responds to incident light source modes that represent different trigonometric operations and input values (within one period), and generates correct and clear calculated results in the output layer. Such a wave-based operation is implemented with specific input values, and the proposed concept work may offer breakthrough inspiration to achieve integrable optical computing devices and photonic signal processors with ultra-fast running speeds.

Abstract Image

具有超曲面的深度学习紧致光学三角算子
本文从理论上和实验上论证了一种基于由简单紧凑的单元格组成的超曲面在特定输入值下实现超高速三角运算的新策略。物理上构建了一个基于电磁波(EM)的光学衍射神经网络,该网络只有一个隐藏层,可以执行四种三角运算(正弦、余弦、正切和余切函数)。在独特的复合输入模式策略下,设计的光学三角算子响应代表不同三角运算和输入值的入射光源模式(在一个周期内),并在输出层产生正确清晰的计算结果。这种基于波的运算是通过特定的输入值来实现的,所提出的概念工作可能为实现具有超快运行速度的可积光计算设备和光子信号处理器提供突破性的灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信