Fiber laser development enabled by machine learning: review and prospect

IF 15.7 Q1 OPTICS
Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, Pu Zhou
{"title":"Fiber laser development enabled by machine learning: review and prospect","authors":"Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, Pu Zhou","doi":"10.1186/s43074-022-00055-3","DOIUrl":null,"url":null,"abstract":"<p>In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"160 9","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-022-00055-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.

Abstract Image

基于机器学习的光纤激光器发展:回顾与展望
近年来,机器学习,特别是各种深度神经网络,作为一种新兴的数据分析和处理技术,为光纤激光器的发展带来了新的见解,特别是复杂的、动态的或对干扰敏感的光纤激光器系统。本文重点介绍了最近在光纤激光领域采用机器学习的有吸引力的研究,包括按需激光输出的设计和操作,非线性效应的预测和控制,激光特性的重建和评估,以及激光器和激光系统的鲁棒控制。我们还评论了挑战和未来的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信