{"title":"Orders on free metabelian groups","authors":"Wenhao Wang","doi":"10.1515/jgth-2022-0203","DOIUrl":null,"url":null,"abstract":"A bi-order on a group 𝐺 is a total, bi-multiplication invariant order. A subset 𝑆 in an ordered group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mo lspace=\"0em\" rspace=\"0em\">⩽</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0001.png\" /> <jats:tex-math>(G,\\leqslant)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is convex if, for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0002.png\" /> <jats:tex-math>f\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> in 𝑆, every element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>h</m:mi> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0003.png\" /> <jats:tex-math>h\\in G</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⩽</m:mo> <m:mi>h</m:mi> <m:mo>⩽</m:mo> <m:mi>g</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0203_ineq_0004.png\" /> <jats:tex-math>f\\leqslant h\\leqslant g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to 𝑆. In this paper, we show that the derived subgroup of the free metabelian group of rank 2 is convex with respect to any bi-order. Moreover, we study the convex hull of the derived subgroup of a free metabelian group of higher rank. As an application, we prove that the space of bi-orders of a non-abelian free metabelian group of finite rank is homeomorphic to the Cantor set. In addition, we show that no bi-order for these groups can be recognised by a regular language.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A bi-order on a group 𝐺 is a total, bi-multiplication invariant order. A subset 𝑆 in an ordered group (G,⩽)(G,\leqslant) is convex if, for all f⩽gf\leqslant g in 𝑆, every element h∈Gh\in G satisfying f⩽h⩽gf\leqslant h\leqslant g belongs to 𝑆. In this paper, we show that the derived subgroup of the free metabelian group of rank 2 is convex with respect to any bi-order. Moreover, we study the convex hull of the derived subgroup of a free metabelian group of higher rank. As an application, we prove that the space of bi-orders of a non-abelian free metabelian group of finite rank is homeomorphic to the Cantor set. In addition, we show that no bi-order for these groups can be recognised by a regular language.
群𝐺上的双阶是一个总的双乘法不变阶。一个有序群(G,≤)(G, \leqslant)中的子集𝑆是凸的,如果对于𝑆中的所有f≤G≤\leqslant G,每个元素h∈G h \in G满足f≤h≤G≤\leqslant h \leqslant G属于𝑆。在本文中,我们证明了秩为2的自由亚丫群的派生子群对于任意双阶是凸的。此外,我们还研究了一类高秩自由亚元群的派生子群的凸包。作为一个应用,证明了有限秩非阿贝尔自由亚贝尔群的双阶空间与康托尔集是同胚的。此外,我们证明了这些组的双序不能被常规语言识别。