Virtual planar braid groups and permutations

Pub Date : 2023-11-29 DOI:10.1515/jgth-2023-0010
Tushar Kanta Naik, Neha Nanda, Mahender Singh
{"title":"Virtual planar braid groups and permutations","authors":"Tushar Kanta Naik, Neha Nanda, Mahender Singh","doi":"10.1515/jgth-2023-0010","DOIUrl":null,"url":null,"abstract":"Twin groups and virtual twin groups are planar analogues of braid groups and virtual braid groups, respectively. These groups play the role of braid groups in the Alexander–Markov correspondence for the theory of stable isotopy classes of immersed circles on orientable surfaces. Motivated by the general idea of Artin and recent work of Bellingeri and Paris [P. Bellingeri and L. Paris, Virtual braids and permutations, <jats:italic>Ann. Inst. Fourier (Grenoble)</jats:italic> 70 (2020), 3, 1341–1362], we obtain a complete description of homomorphisms between virtual twin groups and symmetric groups, which as an application gives us the precise structure of the automorphism group of the virtual twin group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>VT</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0001.png\" /> <jats:tex-math>\\mathrm{VT}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0002.png\" /> <jats:tex-math>n\\geq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> strands. This is achieved by showing the existence of an irreducible right-angled Coxeter group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>KT</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0003.png\" /> <jats:tex-math>\\mathrm{KT}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> inside <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>VT</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0001.png\" /> <jats:tex-math>\\mathrm{VT}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a by-product, it also follows that the twin group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">T</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0005.png\" /> <jats:tex-math>\\mathrm{T}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> embeds inside the virtual twin group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>VT</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0010_ineq_0001.png\" /> <jats:tex-math>\\mathrm{VT}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is an analogue of a similar result for braid groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twin groups and virtual twin groups are planar analogues of braid groups and virtual braid groups, respectively. These groups play the role of braid groups in the Alexander–Markov correspondence for the theory of stable isotopy classes of immersed circles on orientable surfaces. Motivated by the general idea of Artin and recent work of Bellingeri and Paris [P. Bellingeri and L. Paris, Virtual braids and permutations, Ann. Inst. Fourier (Grenoble) 70 (2020), 3, 1341–1362], we obtain a complete description of homomorphisms between virtual twin groups and symmetric groups, which as an application gives us the precise structure of the automorphism group of the virtual twin group VT n \mathrm{VT}_{n} on n 2 n\geq 2 strands. This is achieved by showing the existence of an irreducible right-angled Coxeter group KT n \mathrm{KT}_{n} inside VT n \mathrm{VT}_{n} . As a by-product, it also follows that the twin group T n \mathrm{T}_{n} embeds inside the virtual twin group VT n \mathrm{VT}_{n} , which is an analogue of a similar result for braid groups.
分享
查看原文
虚拟平面编织群和排列
孪生群和虚拟孪生群分别是编织群和虚拟编织群的平面类似物。这些群在可定向表面上沉圆稳定同位素类理论的Alexander-Markov对应中起辫群的作用。受马丁的总体思想和贝林盖里和帕里斯最近的工作的启发[P。《虚拟辫子和排列》,安。Inst. Fourier (Grenoble) 70(2020), 3,1341 - 1362],我们得到了虚拟双胞胎群与对称群之间同态的完整描述,作为应用,我们得到了虚拟双胞胎群VT n \mathrm{VT} _n在n≥2 n {}\geq 2链上的自同态群的精确结构。这是通过证明在VT n \mathrm{VT} _n内存在一个不可约的直角Coxeter群KT {n}\mathrm{KT} _n{来实现的。作为副产品,还可以得出双胞胎组T n }\mathrm{T} _n{嵌入到虚拟双胞胎组VT n }\mathrm{VT} _n{中,这与编织组的类似结果类似。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信