Hussain Almohri, Layne Watson, David Evans, Stephen Billups
{"title":"Dynamic System Diversification for Securing Cloud-based IoT Subnetworks","authors":"Hussain Almohri, Layne Watson, David Evans, Stephen Billups","doi":"https://dl.acm.org/doi/10.1145/3547350","DOIUrl":null,"url":null,"abstract":"<p>Remote exploitation attacks use software vulnerabilities to penetrate through a network of Internet of Things (IoT) devices. This work addresses defending against remote exploitation attacks on vulnerable IoT devices. As an attack mitigation strategy, we assume it is not possible to fix all the vulnerabilities and propose to diversify the open-source software used to manage IoT devices. Our approach is to deploy dynamic cloud-based virtual machine proxies for physical IoT devices. Our architecture leverages virtual machine proxies with diverse software configurations to mitigate vulnerable and static software configurations on physical devices. We develop an algorithm for selecting new configurations based on network anomaly detection signals to learn vulnerable software configurations on IoT devices, automatically shifting towards more secure configurations. Cloud-based proxy machines mediate requests between application clients and vulnerable IoT devices, facilitating a dynamic diversification system. We report on simulation experiments to evaluate the dynamic system. Two models of powerful adversaries are introduced and simulated against the diversified defense strategy. Our experiments show that a dynamically diversified IoT architecture can be invulnerable to large classes of attacks that would succeed against a static architecture.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"8 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3547350","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Remote exploitation attacks use software vulnerabilities to penetrate through a network of Internet of Things (IoT) devices. This work addresses defending against remote exploitation attacks on vulnerable IoT devices. As an attack mitigation strategy, we assume it is not possible to fix all the vulnerabilities and propose to diversify the open-source software used to manage IoT devices. Our approach is to deploy dynamic cloud-based virtual machine proxies for physical IoT devices. Our architecture leverages virtual machine proxies with diverse software configurations to mitigate vulnerable and static software configurations on physical devices. We develop an algorithm for selecting new configurations based on network anomaly detection signals to learn vulnerable software configurations on IoT devices, automatically shifting towards more secure configurations. Cloud-based proxy machines mediate requests between application clients and vulnerable IoT devices, facilitating a dynamic diversification system. We report on simulation experiments to evaluate the dynamic system. Two models of powerful adversaries are introduced and simulated against the diversified defense strategy. Our experiments show that a dynamically diversified IoT architecture can be invulnerable to large classes of attacks that would succeed against a static architecture.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.