Mehdi Mashayekhi, Nirav Ajmeri, George F. List, Munindar P. Singh
{"title":"Prosocial Norm Emergence in Multi-agent Systems","authors":"Mehdi Mashayekhi, Nirav Ajmeri, George F. List, Munindar P. Singh","doi":"https://dl.acm.org/doi/10.1145/3540202","DOIUrl":null,"url":null,"abstract":"<p>Multi-agent systems provide a basis for developing systems of autonomous entities and thus find application in a variety of domains. We consider a setting where not only the member agents are adaptive but also the multi-agent system viewed as an entity in its own right is adaptive. Specifically, the social structure of a multi-agent system can be reflected in the social norms among its members. It is well recognized that the norms that arise in society are not always beneficial to its members. We focus on prosocial norms, which help achieve positive outcomes for society and often provide guidance to agents to act in a manner that takes into account the welfare of others.</p><p>Specifically, we propose Cha, a framework for the emergence of prosocial norms. Unlike previous norm emergence approaches, Cha supports continual change to a system (agents may enter and leave) and dynamism (norms may change when the environment changes). Importantly, Cha agents incorporate prosocial decision-making based on inequity aversion theory, reflecting an intuition of guilt arising from being antisocial. In this manner, Cha brings together two important themes in prosociality: decision-making by individuals and fairness of system-level outcomes. We demonstrate via simulation that Cha can improve aggregate societal gains and fairness of outcomes.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"8 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3540202","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-agent systems provide a basis for developing systems of autonomous entities and thus find application in a variety of domains. We consider a setting where not only the member agents are adaptive but also the multi-agent system viewed as an entity in its own right is adaptive. Specifically, the social structure of a multi-agent system can be reflected in the social norms among its members. It is well recognized that the norms that arise in society are not always beneficial to its members. We focus on prosocial norms, which help achieve positive outcomes for society and often provide guidance to agents to act in a manner that takes into account the welfare of others.
Specifically, we propose Cha, a framework for the emergence of prosocial norms. Unlike previous norm emergence approaches, Cha supports continual change to a system (agents may enter and leave) and dynamism (norms may change when the environment changes). Importantly, Cha agents incorporate prosocial decision-making based on inequity aversion theory, reflecting an intuition of guilt arising from being antisocial. In this manner, Cha brings together two important themes in prosociality: decision-making by individuals and fairness of system-level outcomes. We demonstrate via simulation that Cha can improve aggregate societal gains and fairness of outcomes.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.