Ahmad Esmaeili, John C. Gallagher, John A. Springer, Eric T. Matson
{"title":"HAMLET: A Hierarchical Agent-based Machine Learning Platform","authors":"Ahmad Esmaeili, John C. Gallagher, John A. Springer, Eric T. Matson","doi":"https://dl.acm.org/doi/full/10.1145/3530191","DOIUrl":null,"url":null,"abstract":"<p>Hierarchical Multi-agent Systems provide convenient and relevant ways to analyze, model, and simulate complex systems composed of a large number of entities that interact at different levels of abstraction. In this article, we introduce HAMLET (Hierarchical Agent-based Machine LEarning plaTform), a hybrid machine learning platform based on hierarchical multi-agent systems, to facilitate the research and democratization of geographically and/or locally distributed machine learning entities. The proposed system models machine learning solutions as a hypergraph and autonomously sets up a multi-level structure of heterogeneous agents based on their innate capabilities and learned skills. HAMLET aids the design and management of machine learning systems and provides analytical capabilities for research communities to assess the existing and/or new algorithms/datasets through flexible and customizable queries. The proposed hybrid machine learning platform does not assume restrictions on the type of learning algorithms/datasets and is theoretically proven to be sound and complete with polynomial computational requirements. Additionally, it is examined empirically on 120 training and 4 generalized batch testing tasks performed on 24 machine learning algorithms and 9 standard datasets. The provided experimental results not only establish confidence in the platform’s consistency and correctness but also demonstrate its testing and analytical capacity.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"9 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/full/10.1145/3530191","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical Multi-agent Systems provide convenient and relevant ways to analyze, model, and simulate complex systems composed of a large number of entities that interact at different levels of abstraction. In this article, we introduce HAMLET (Hierarchical Agent-based Machine LEarning plaTform), a hybrid machine learning platform based on hierarchical multi-agent systems, to facilitate the research and democratization of geographically and/or locally distributed machine learning entities. The proposed system models machine learning solutions as a hypergraph and autonomously sets up a multi-level structure of heterogeneous agents based on their innate capabilities and learned skills. HAMLET aids the design and management of machine learning systems and provides analytical capabilities for research communities to assess the existing and/or new algorithms/datasets through flexible and customizable queries. The proposed hybrid machine learning platform does not assume restrictions on the type of learning algorithms/datasets and is theoretically proven to be sound and complete with polynomial computational requirements. Additionally, it is examined empirically on 120 training and 4 generalized batch testing tasks performed on 24 machine learning algorithms and 9 standard datasets. The provided experimental results not only establish confidence in the platform’s consistency and correctness but also demonstrate its testing and analytical capacity.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.