{"title":"Can a single migrant per generation rescue a dying population?","authors":"Iddo Ben-Ari , Rinaldo B. Schinazi","doi":"10.1016/j.aam.2023.102651","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a population model to test the hypothesis that even a single migrant per generation may rescue a dying population. Let <span><math><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><mi>k</mi><mo>∈</mo><mi>N</mi><mo>)</mo></math></span> be a sequence of real numbers in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a size of the population at time <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. Then, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></math></span>, where the conditional distribution of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> given <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>k</mi></math></span><span> is a binomial random variable with parameters </span><span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span>. We assume that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>k</mi><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mi>ρ</mi></math></span> exists. If <span><math><mi>ρ</mi><mo><</mo><mn>1</mn></math></span> the process is transient with speed <span><math><mn>1</mn><mo>−</mo><mi>ρ</mi></math></span>. So for our model a single migrant per generation may rescue a dying population! If <span><math><mi>ρ</mi><mo>></mo><mn>1</mn></math></span><span> the process is positive recurrent. In the critical case </span><span><math><mi>ρ</mi><mo>=</mo><mn>1</mn></math></span> the process is recurrent or transient according to how <span><math><mi>k</mi><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> converges to 1. When <span><math><mi>ρ</mi><mo>=</mo><mn>0</mn></math></span><span> and under some regularity conditions, the support of the increments is eventually finite.</span></p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a population model to test the hypothesis that even a single migrant per generation may rescue a dying population. Let be a sequence of real numbers in . Let be a size of the population at time . Then, , where the conditional distribution of given is a binomial random variable with parameters . We assume that exists. If the process is transient with speed . So for our model a single migrant per generation may rescue a dying population! If the process is positive recurrent. In the critical case the process is recurrent or transient according to how converges to 1. When and under some regularity conditions, the support of the increments is eventually finite.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.