Can a single migrant per generation rescue a dying population?

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Iddo Ben-Ari , Rinaldo B. Schinazi
{"title":"Can a single migrant per generation rescue a dying population?","authors":"Iddo Ben-Ari ,&nbsp;Rinaldo B. Schinazi","doi":"10.1016/j.aam.2023.102651","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a population model to test the hypothesis that even a single migrant per generation may rescue a dying population. Let <span><math><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><mi>k</mi><mo>∈</mo><mi>N</mi><mo>)</mo></math></span> be a sequence of real numbers in <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a size of the population at time <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. Then, <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></math></span>, where the conditional distribution of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> given <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>k</mi></math></span><span> is a binomial random variable with parameters </span><span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span>. We assume that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>k</mi><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mi>ρ</mi></math></span> exists. If <span><math><mi>ρ</mi><mo>&lt;</mo><mn>1</mn></math></span> the process is transient with speed <span><math><mn>1</mn><mo>−</mo><mi>ρ</mi></math></span>. So for our model a single migrant per generation may rescue a dying population! If <span><math><mi>ρ</mi><mo>&gt;</mo><mn>1</mn></math></span><span> the process is positive recurrent. In the critical case </span><span><math><mi>ρ</mi><mo>=</mo><mn>1</mn></math></span> the process is recurrent or transient according to how <span><math><mi>k</mi><mi>c</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> converges to 1. When <span><math><mi>ρ</mi><mo>=</mo><mn>0</mn></math></span><span> and under some regularity conditions, the support of the increments is eventually finite.</span></p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a population model to test the hypothesis that even a single migrant per generation may rescue a dying population. Let (ck:kN) be a sequence of real numbers in (0,1). Let Xn be a size of the population at time n0. Then, Xn+1=XnYn+1+1, where the conditional distribution of Yn+1 given Xn=k is a binomial random variable with parameters (k,c(k)). We assume that limkkc(k)=ρ exists. If ρ<1 the process is transient with speed 1ρ. So for our model a single migrant per generation may rescue a dying population! If ρ>1 the process is positive recurrent. In the critical case ρ=1 the process is recurrent or transient according to how kc(k) converges to 1. When ρ=0 and under some regularity conditions, the support of the increments is eventually finite.

每一代人一个移民能拯救垂死的人口吗?
我们引入了一个人口模型来检验这样一个假设,即即使每代只有一个移民也可能拯救一个垂死的人口。设(ck:k∈N)为(0,1)中的实数序列。设Xn为n≥0时刻的总体大小。则Xn+1=Xn−Yn+1+1,其中,当Xn=k时,Yn+1的条件分布是一个参数为(k,c(k))的二项随机变量。我们假设limk→∞(k)=ρ存在。若ρ<1,则该过程为瞬态,速度为1−ρ。因此,在我们的模型中,每代一个移民可能拯救一个垂死的人口!若ρ>1,则该过程为正循环。在ρ=1的临界情况下,根据kc(k)如何收敛于1,过程是循环的还是瞬态的。当ρ=0时,在某些正则性条件下,增量的支持最终是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信