{"title":"An asymptotic development of the Poisson integral for Laguerre polynomial expansions","authors":"Ulrich Abel","doi":"10.1016/j.jat.2023.106007","DOIUrl":null,"url":null,"abstract":"<div><p><span>The purpose of this paper is the study of the rate of convergence of Poisson integrals for Laguerre expansions. The convergence of partial sums of Fourier series of functions in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span> spaces was studied, for several classes of orthogonal polynomials. In the Laguerre case Askey and Waigner proved convergence for functions </span><span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi></mrow></mfenced></mrow></math></span> with <span><math><mrow><mn>4</mn><mo>/</mo><mn>3</mn><mo><</mo><mi>p</mi><mo><</mo><mn>4</mn></mrow></math></span>. In this paper we deal with the Poisson integral <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></math></span>\n<span><math><mfenced><mrow><mn>0</mn><mo><</mo><mi>r</mi><mo><</mo><mn>1</mn></mrow></mfenced></math></span><span> which arises by applying Abel’s summation method to the Laguerre expansion of the function </span><span><math><mi>f</mi></math></span><span>. About 50 years ago, Muckenhoupt intensively studied the Poisson integral for the Laguerre and Hermite polynomials. Among other things he proved pointwise convergence<span>, the convergence by norm, and that the Poisson integral is a contraction mapping in </span></span><span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mi>∞</mi></mrow></mfenced></mrow></math></span>. Toczek and Wachnicki gave a Voronovskaja-type theorem by calculating the limit <span><math><mrow><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></mfenced></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mfenced><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>−</mo><mi>f</mi><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>, provided that <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> exists. We generalize this formula by deriving a complete asymptotic development. All its coefficients are explicitly given in a concise form. As an application we apply extrapolation methods in order to improve the rate of convergence of <span><math><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001454","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is the study of the rate of convergence of Poisson integrals for Laguerre expansions. The convergence of partial sums of Fourier series of functions in spaces was studied, for several classes of orthogonal polynomials. In the Laguerre case Askey and Waigner proved convergence for functions with . In this paper we deal with the Poisson integral
which arises by applying Abel’s summation method to the Laguerre expansion of the function . About 50 years ago, Muckenhoupt intensively studied the Poisson integral for the Laguerre and Hermite polynomials. Among other things he proved pointwise convergence, the convergence by norm, and that the Poisson integral is a contraction mapping in . Toczek and Wachnicki gave a Voronovskaja-type theorem by calculating the limit as , provided that exists. We generalize this formula by deriving a complete asymptotic development. All its coefficients are explicitly given in a concise form. As an application we apply extrapolation methods in order to improve the rate of convergence of as .
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.