An asymptotic development of the Poisson integral for Laguerre polynomial expansions

IF 0.9 3区 数学 Q2 MATHEMATICS
Ulrich Abel
{"title":"An asymptotic development of the Poisson integral for Laguerre polynomial expansions","authors":"Ulrich Abel","doi":"10.1016/j.jat.2023.106007","DOIUrl":null,"url":null,"abstract":"<div><p><span>The purpose of this paper is the study of the rate of convergence of Poisson integrals for Laguerre expansions. The convergence of partial sums of Fourier series of functions in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span> spaces was studied, for several classes of orthogonal polynomials. In the Laguerre case Askey and Waigner proved convergence for functions </span><span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi></mrow></mfenced></mrow></math></span> with <span><math><mrow><mn>4</mn><mo>/</mo><mn>3</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>4</mn></mrow></math></span>. In this paper we deal with the Poisson integral <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></math></span>\n<span><math><mfenced><mrow><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><mn>1</mn></mrow></mfenced></math></span><span> which arises by applying Abel’s summation method to the Laguerre expansion of the function </span><span><math><mi>f</mi></math></span><span>. About 50 years ago, Muckenhoupt intensively studied the Poisson integral for the Laguerre and Hermite polynomials. Among other things he proved pointwise convergence<span>, the convergence by norm, and that the Poisson integral is a contraction mapping in </span></span><span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mfenced><mrow><mn>0</mn><mo>,</mo><mi>∞</mi></mrow></mfenced></mrow></math></span>. Toczek and Wachnicki gave a Voronovskaja-type theorem by calculating the limit <span><math><mrow><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></mfenced></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mfenced><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>−</mo><mi>f</mi><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>, provided that <span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> exists. We generalize this formula by deriving a complete asymptotic development. All its coefficients are explicitly given in a concise form. As an application we apply extrapolation methods in order to improve the rate of convergence of <span><math><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>f</mi></mrow></mfenced><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></math></span> as <span><math><mrow><mi>r</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001454","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is the study of the rate of convergence of Poisson integrals for Laguerre expansions. The convergence of partial sums of Fourier series of functions in Lp spaces was studied, for several classes of orthogonal polynomials. In the Laguerre case Askey and Waigner proved convergence for functions fLp0,+ with 4/3<p<4. In this paper we deal with the Poisson integral Arf 0<r<1 which arises by applying Abel’s summation method to the Laguerre expansion of the function f. About 50 years ago, Muckenhoupt intensively studied the Poisson integral for the Laguerre and Hermite polynomials. Among other things he proved pointwise convergence, the convergence by norm, and that the Poisson integral is a contraction mapping in Lp0,. Toczek and Wachnicki gave a Voronovskaja-type theorem by calculating the limit 1r1Arfxfx as r1, provided that fx exists. We generalize this formula by deriving a complete asymptotic development. All its coefficients are explicitly given in a concise form. As an application we apply extrapolation methods in order to improve the rate of convergence of Arfx as r1.

拉盖尔多项式展开式泊松积分的渐近发展
本文的目的是研究拉盖尔展开下泊松积分的收敛速度。研究了几种正交多项式在Lp空间中的傅里叶级数部分和的收敛性。在Laguerre情况下,Askey和Waigner用4/3<p<4证明了函数f∈l0,+∞的收敛性。在本文中,我们处理了泊松积分Arf0<r<1,它是通过将Abel的求和方法应用于函数f的拉盖尔展开而产生的。大约50年前,Muckenhoupt深入研究了拉盖尔多项式和埃尔米特多项式的泊松积分。除此之外,他还证明了点向收敛,范数收敛,泊松积分是l0,∞上的收缩映射。Toczek和Wachnicki通过计算极限1−r−1Arfx−fx为r→1−,给出了voronovskaja型定理,假设f ' x存在。我们通过推导一个完全渐近展开来推广这个公式。它的所有系数都以简洁的形式显式给出。作为一种应用,我们采用外推方法来提高Arfx在r→1−时的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信