Energy-saving discharge needle shape for electrohydrodynamic airflow generation

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Donato Rubinetti , Kamran Iranshahi , Daniel I. Onwude , Bart M. Nicolaï , Lei Xie , Thijs Defraeye
{"title":"Energy-saving discharge needle shape for electrohydrodynamic airflow generation","authors":"Donato Rubinetti ,&nbsp;Kamran Iranshahi ,&nbsp;Daniel I. Onwude ,&nbsp;Bart M. Nicolaï ,&nbsp;Lei Xie ,&nbsp;Thijs Defraeye","doi":"10.1016/j.elstat.2023.103876","DOIUrl":null,"url":null,"abstract":"<div><p>Electrohydrodynamics (EHD) is a way to produce low energy-consuming airflow without moving components. The basis of airflow by EHD is corona discharge. A way to generate corona discharge is done, among others, via needle-type emitter electrodes whose shape and arrangement play a crucial role in the effectiveness of the discharge. Until now, the needle shape was chosen somewhat arbitrarily, although it impacts the energy consumption of the EHD process. We lack systematic studies on the impact of needle shape on the EHD discharge process and associated airflow to help engineers and scientists choose the best shape. This in-silico study screens the impact of the needle shape parameters on EHD performance in terms of electrical power consumption and airflow generation. The study aims to find the ideal EHD needle shape for unrestricted and confined flow. For this purpose, we test three different geometrical configurations. The first configuration is a free-flow single-needle configuration. The second configuration adds a dielectric nearby, which represents a needle enclosure. Lastly, a configuration including a dielectric and a converging nozzle is examined. All studies use a 2D-axisymmetric, fully automatized EHD physics-based model. The first set of parametric studies explores the inherent geometrical properties of the needle shape, like tip radii (10–250 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>), needle cone angle (10–70°), and needle diameters (0.5–2 mm). The second set of parametric studies investigates the operation conditions, such as the emitter-collector distance (10–40 mm), the nozzle contraction ratio (0.04–1), and the operating voltage (6–32 kV). The results of the free-flow configuration show qualitative agreement with experiments on existing needle products. The ideal energy-saving needle shape for free flow configuration features a short conical tip length (i.e., a large angle <span><math><mrow><mo>≥</mo><mrow><mn>30</mn><mo>°</mo></mrow></mrow></math></span>), a diameter of 2 mm, and a needle rip radius of 100 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>. The situation changes when a dielectric is present, and a sharp angle of 10° is favorable to reduce energy consumption. Since a dielectric inverts the optimal needle shape, it makes sense to customize it for a particular application in EHD airflow generation. We provide performance maps that can be used as design charts. This study is a guideline to optimize EHD devices further to reduce energy consumption and increase airflow speed.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"127 ","pages":"Article 103876"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304388623000852/pdfft?md5=0cbe80408ebea3e0b9143ceb5af0716c&pid=1-s2.0-S0304388623000852-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388623000852","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electrohydrodynamics (EHD) is a way to produce low energy-consuming airflow without moving components. The basis of airflow by EHD is corona discharge. A way to generate corona discharge is done, among others, via needle-type emitter electrodes whose shape and arrangement play a crucial role in the effectiveness of the discharge. Until now, the needle shape was chosen somewhat arbitrarily, although it impacts the energy consumption of the EHD process. We lack systematic studies on the impact of needle shape on the EHD discharge process and associated airflow to help engineers and scientists choose the best shape. This in-silico study screens the impact of the needle shape parameters on EHD performance in terms of electrical power consumption and airflow generation. The study aims to find the ideal EHD needle shape for unrestricted and confined flow. For this purpose, we test three different geometrical configurations. The first configuration is a free-flow single-needle configuration. The second configuration adds a dielectric nearby, which represents a needle enclosure. Lastly, a configuration including a dielectric and a converging nozzle is examined. All studies use a 2D-axisymmetric, fully automatized EHD physics-based model. The first set of parametric studies explores the inherent geometrical properties of the needle shape, like tip radii (10–250 μm), needle cone angle (10–70°), and needle diameters (0.5–2 mm). The second set of parametric studies investigates the operation conditions, such as the emitter-collector distance (10–40 mm), the nozzle contraction ratio (0.04–1), and the operating voltage (6–32 kV). The results of the free-flow configuration show qualitative agreement with experiments on existing needle products. The ideal energy-saving needle shape for free flow configuration features a short conical tip length (i.e., a large angle 30°), a diameter of 2 mm, and a needle rip radius of 100 μm. The situation changes when a dielectric is present, and a sharp angle of 10° is favorable to reduce energy consumption. Since a dielectric inverts the optimal needle shape, it makes sense to customize it for a particular application in EHD airflow generation. We provide performance maps that can be used as design charts. This study is a guideline to optimize EHD devices further to reduce energy consumption and increase airflow speed.

节能型放电针形,用于电流体动力气流产生
电流体动力学(EHD)是一种在没有运动部件的情况下产生低能耗气流的方法。EHD气流的基础是电晕放电。一种产生电晕放电的方法是通过针状发射极,其形状和排列对放电的有效性起着至关重要的作用。到目前为止,针形的选择有些随意,尽管它会影响EHD过程的能耗。对于针形对EHD放电过程和相关气流的影响,我们缺乏系统的研究来帮助工程师和科学家选择最佳的针形。这项计算机研究筛选了针形参数对EHD性能的影响,包括电力消耗和气流产生。该研究的目的是找到理想的EHD针形,用于无限制和受限流动。为此,我们测试了三种不同的几何结构。第一种配置是自由流动的单针配置。第二种配置在附近增加了一个电介质,它代表一个针罩。最后,研究了一种包括介电介质和会聚喷嘴的结构。所有的研究都使用二维轴对称,完全自动化的EHD物理模型。第一组参数研究探讨了针形的固有几何特性,如针尖半径(10-250 μm)、针锥角(10-70°)和针直径(0.5-2 mm)。第二组参数研究考察了运行条件,如发射极-集电极距离(10-40 mm)、喷嘴收缩比(0.04-1)和工作电压(6-32 kV)。自由流动结构的结果与现有针产品的实验结果在定性上一致。自由流动配置时,理想的节能针形为短锥形针尖(即大角度≥30°),直径为2mm,针裂半径为100 μm。当介质存在时,情况发生变化,10°的锐角有利于降低能耗。由于电介质反转了最佳的针形,因此为EHD气流产生的特定应用定制它是有意义的。我们提供可以用作设计图的性能图。本研究对进一步优化EHD装置,降低能耗,提高气流速度具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信