Green functions for four-point boundary value problems with applications to heterogeneous beams

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
Abderrazek Messaoudi, László Péter Kiss, György Szeidl
{"title":"Green functions for four-point boundary value problems with applications to heterogeneous beams","authors":"Abderrazek Messaoudi,&nbsp;László Péter Kiss,&nbsp;György Szeidl","doi":"10.1016/j.apples.2023.100165","DOIUrl":null,"url":null,"abstract":"<div><p>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"17 ","pages":"Article 100165"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496823000407/pdfft?md5=5a2dbd1bf013126ec34230a736f99f12&pid=1-s2.0-S2666496823000407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496823000407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.

四点边值问题的格林函数及其在非均质梁中的应用
本研究的主要目的是定义四点边值问题的格林函数。进一步的目的是澄清格林函数具有什么性质,并提出计算这些格林函数元素的方法。示例涉及两个具有四个支撑的非均匀梁:(第一)[第二]梁在端点处(固定)[钉住],而中间支撑是两个滚轮。特征频率的确定导致与齐次边界条件相关的四点特征值问题。利用属于这些特征值问题的格林函数我们可以将它们转化为由齐次Fredholm积分方程控制的特征值问题。然后将齐次Fredholm积分方程简化为代数特征值问题,计算出数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信