{"title":"Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway.","authors":"Liying Shen, Kongjie Lu, Zhenfeng Chen, Yingwei Zhu, Cong Zhang, Li Zhang","doi":"10.4081/ejh.2023.3816","DOIUrl":null,"url":null,"abstract":"<p><p>Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2023.3816","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.