Induced phase transformation in ionizable colloidal nanoparticles

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Leticia López-Flores, Monica Olvera de la Cruz
{"title":"Induced phase transformation in ionizable colloidal nanoparticles","authors":"Leticia López-Flores,&nbsp;Monica Olvera de la Cruz","doi":"10.1140/epje/s10189-023-00386-4","DOIUrl":null,"url":null,"abstract":"<p>Acid–base equilibria directly influence the functionality and behavior of particles in a system. Due to the ionizing effects of acid–base functional groups, particles will undergo charge exchange. The degree of ionization and their intermolecular and electrostatic interactions are controlled by varying the pH and salt concentration of the solution in a system. Although the pH can be tuned in experiments, it is hard to model this effect using simulations or theoretical approaches. This is due to the difficulty in treating charge regulation and capturing the cooperative effects in a colloidal suspension with Coulombic interaction. In this work, we analyze a suspension of ionizable colloidal particles via molecular dynamics (MD) simulations, along with Monte Carlo simulations for charge regulation (MC-CR) and derive a phase diagram of the system as a function of pH. It is observed that as pH increases, particles functionalized with acid groups change their arrangement from face-centered cubic (FCC) packing to a disordered state. We attribute these transitions to an increase in the degree of charge polydispersity arising from an increase in pH. Our work shows that charge regulation leads to amorphous solids in colloids when the mean nanoparticle charge is sufficiently high.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00386-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00386-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acid–base equilibria directly influence the functionality and behavior of particles in a system. Due to the ionizing effects of acid–base functional groups, particles will undergo charge exchange. The degree of ionization and their intermolecular and electrostatic interactions are controlled by varying the pH and salt concentration of the solution in a system. Although the pH can be tuned in experiments, it is hard to model this effect using simulations or theoretical approaches. This is due to the difficulty in treating charge regulation and capturing the cooperative effects in a colloidal suspension with Coulombic interaction. In this work, we analyze a suspension of ionizable colloidal particles via molecular dynamics (MD) simulations, along with Monte Carlo simulations for charge regulation (MC-CR) and derive a phase diagram of the system as a function of pH. It is observed that as pH increases, particles functionalized with acid groups change their arrangement from face-centered cubic (FCC) packing to a disordered state. We attribute these transitions to an increase in the degree of charge polydispersity arising from an increase in pH. Our work shows that charge regulation leads to amorphous solids in colloids when the mean nanoparticle charge is sufficiently high.

Abstract Image

可电离胶体纳米颗粒的诱导相变。
酸碱平衡直接影响系统中粒子的功能和行为。由于酸碱官能团的电离作用,粒子会发生电荷交换。电离程度及其分子间和静电相互作用是通过改变系统中溶液的pH和盐浓度来控制的。虽然pH值可以在实验中调整,但很难用模拟或理论方法来模拟这种效果。这是由于在具有库仑相互作用的胶体悬浮液中难以处理电荷调节和捕获协同效应。在这项工作中,我们通过分子动力学(MD)模拟和电荷调节的蒙特卡罗模拟(MC-CR)分析了可电离胶体颗粒的悬浮液,并得出了系统的相图作为pH的函数。观察到,随着pH的增加,酸基功能化的颗粒将其排列从面心立方(FCC)排列改变为无序状态。我们将这些转变归因于ph值增加引起的电荷多分散度的增加。我们的工作表明,当纳米粒子的平均电荷足够高时,电荷调节导致胶体中的非晶固体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信