{"title":"Generating networks of genetic processors","authors":"Campos, Marcelino, Sempere, José M.","doi":"10.1007/s10710-021-09423-7","DOIUrl":null,"url":null,"abstract":"<p>The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10710-021-09423-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.
期刊介绍:
A unique source reporting on methods for artificial evolution of programs and machines...
Reports innovative and significant progress in automatic evolution of software and hardware.
Features both theoretical and application papers.
Covers hardware implementations, artificial life, molecular computing and emergent computation techniques.
Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.