{"title":"Controllable large-scale processing of temperature regulating sheath-core fibers with high-enthalpy for thermal management","authors":"Ziye Chen , Zexu Hu , Shining Chen , Senlong Yu , Liping Zhu , Hengxue Xiang , Meifang Zhu","doi":"10.1016/j.nanoms.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Temperature regulating fibers (TRF<sub>s</sub>) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRF<sub>s</sub> are not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF<sub>s</sub> with excellent thermal and mechanical properties. Here, polyamide 6 (PA6) based TRF<sub>s</sub> with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF (TRF<sub>sc</sub>) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials (ssPCM), dendritic silica@polyethylene glycol (SiO<sub>2</sub>@PEG). With the aid of the sheath structure, the filling content of SiO<sub>2</sub>@PEG can reach 30 %, so that the enthalpy of the TRF<sub>s</sub> can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93 °C. In addition, the mechanical strength of the prepared TRF<sub>sc</sub> reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 3","pages":"Pages 337-344"},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258996512300065X/pdfft?md5=d91f01a1e13bd7bb3d0bcd209934eae3&pid=1-s2.0-S258996512300065X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258996512300065X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature regulating fibers (TRFs) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFs are not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRFs with excellent thermal and mechanical properties. Here, polyamide 6 (PA6) based TRFs with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF (TRFsc) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials (ssPCM), dendritic silica@polyethylene glycol (SiO2@PEG). With the aid of the sheath structure, the filling content of SiO2@PEG can reach 30 %, so that the enthalpy of the TRFs can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93 °C. In addition, the mechanical strength of the prepared TRFsc reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.