A novel “Snowflake”--rGO-CuO for ultrasonic degradation of rhodamine and methyl orange

IF 9.9 2区 材料科学 Q1 Engineering
Yitong Wang , Yuhua Wang , Zuzhao Xiong , Xifei Li
{"title":"A novel “Snowflake”--rGO-CuO for ultrasonic degradation of rhodamine and methyl orange","authors":"Yitong Wang ,&nbsp;Yuhua Wang ,&nbsp;Zuzhao Xiong ,&nbsp;Xifei Li","doi":"10.1016/j.nanoms.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene-doped CuO (rGO-CuO) nanocomposites with flower shapes were prepared by an improved solvothermal method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible spectroscopy. The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance. On the basis of comparative experiments, the photodegradation mechanisms of two typical dyes, Rhodamine B (Rh B) and methyl orange (MO), were proposed. The results demonstrated that the doped CuO could improve the degradation efficiency. The catalytic degradation efficiency of rGO-CuO (2:1) to rhodamine B (RhB) and methyl orange (MO) reached 90 ​% and 87 ​% respectively, which were 2.1 times and 4.4 times of the reduced graphene oxide. Through the first-principles and other theories, we give the reasons for the enhanced catalytic performance of rGO-CuO: combined with internal and external factors, rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH· in pollutant molecules to achieve degradation. The rGO-CuO nanocomposite has a simple preparation process and low price, and has a high efficiency of degrading water pollution products and no secondary pollution products. It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000685/pdfft?md5=7c2f2a93495ff485e2f481625b2b7184&pid=1-s2.0-S2589965123000685-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000685","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene-doped CuO (rGO-CuO) nanocomposites with flower shapes were prepared by an improved solvothermal method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible spectroscopy. The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance. On the basis of comparative experiments, the photodegradation mechanisms of two typical dyes, Rhodamine B (Rh B) and methyl orange (MO), were proposed. The results demonstrated that the doped CuO could improve the degradation efficiency. The catalytic degradation efficiency of rGO-CuO (2:1) to rhodamine B (RhB) and methyl orange (MO) reached 90 ​% and 87 ​% respectively, which were 2.1 times and 4.4 times of the reduced graphene oxide. Through the first-principles and other theories, we give the reasons for the enhanced catalytic performance of rGO-CuO: combined with internal and external factors, rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH· in pollutant molecules to achieve degradation. The rGO-CuO nanocomposite has a simple preparation process and low price, and has a high efficiency of degrading water pollution products and no secondary pollution products. It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.

一种新型“雪花”——rGO-CuO用于超声降解罗丹明和甲基橙
采用改进的溶剂热法制备了石墨烯掺杂CuO (rGO-CuO)纳米花状复合材料。采用x射线衍射、x射线光电子能谱和紫外可见光谱对样品进行了表征。采用电子顺磁共振法对超声辐照下氧化石墨烯-氧化铜复合材料降解反应中的活性物质进行了检测。在对比实验的基础上,提出了罗丹明B (Rh B)和甲基橙(MO)两种典型染料的光降解机理。结果表明,掺杂CuO可以提高降解效率。rGO-CuO(2:1)对罗丹明B (RhB)和甲基橙(MO)的催化降解效率分别达到90%和87%,分别是还原后氧化石墨烯的2.1倍和4.4倍。通过第一性原理和其他理论,我们给出了rGO-CuO催化性能增强的原因:综合内外因素,超声作用下rGO-CuO可以产生更多的空穴和活性位点,与污染物分子中的OH·相互作用,达到降解的目的。rGO-CuO纳米复合材料制备工艺简单,价格低廉,对水污染产物降解效率高,无二次污染产物。在水污染工业生产和生活中具有低成本、高效率的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信