{"title":"Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis","authors":"","doi":"10.1016/j.nanoms.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater. Herein, a heterogeneous-structured catalyst is constructed by depositing NiFe-layered double hydroxides (NiFe-LDH) on the substrate of MXene (V<sub>2</sub>CT<sub><em>x</em></sub>) modified Ni foam (NF), and abbreviated as NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF. As demonstrated, owing to the intrinsic negative charge characteristic of V<sub>2</sub>CT<sub><em>x</em></sub>, chlorine ions are denied entry to the interface between NiFe-LDH and V<sub>2</sub>CT<sub><em>x</em></sub>/NF substrate, thus endowing NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm<sup>−2</sup>. Meanwhile, the two-dimensional structure and high electrical conductivity of V<sub>2</sub>CT<sub><em>x</em></sub> can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer, thereby synergistically promoting the catalytic performance of NiFe-LDH/V<sub>2</sub>CT<sub><em>x</em></sub>/NF in both deionized water electrolyte (261 mV at 100 mA cm<sup>−2</sup>) and simulated seawater electrolyte (241 mV at 100 mA cm<sup>−2</sup>). This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 4","pages":"Pages 413-418"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000648/pdfft?md5=82a33fb2c64bd2d8c0a655435ec3d8f4&pid=1-s2.0-S2589965123000648-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000648","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater. Herein, a heterogeneous-structured catalyst is constructed by depositing NiFe-layered double hydroxides (NiFe-LDH) on the substrate of MXene (V2CTx) modified Ni foam (NF), and abbreviated as NiFe-LDH/V2CTx/NF. As demonstrated, owing to the intrinsic negative charge characteristic of V2CTx, chlorine ions are denied entry to the interface between NiFe-LDH and V2CTx/NF substrate, thus endowing NiFe-LDH/V2CTx/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm−2. Meanwhile, the two-dimensional structure and high electrical conductivity of V2CTx can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer, thereby synergistically promoting the catalytic performance of NiFe-LDH/V2CTx/NF in both deionized water electrolyte (261 mV at 100 mA cm−2) and simulated seawater electrolyte (241 mV at 100 mA cm−2). This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
由于析氧催化剂的组成复杂、副反应激烈,其活性低、耐久性差,阻碍了海水电解的高效进行。本文通过在MXene (V2CTx)改性Ni泡沫(NF)基体上沉积nife层状双氢氧化物(NiFe-LDH)构建了一种异质结构催化剂,简称为NiFe-LDH/V2CTx/NF。结果表明,由于V2CTx的固有负电荷特性,氯离子被拒绝进入nfe - ldh和V2CTx/NF底物之间的界面,从而赋予nfe - ldh /V2CTx/NF催化剂高耐腐蚀性和在500 mA cm - 2下110 h的持久稳定性。同时,V2CTx的二维结构和高导电性可以分别扩大电化学活性表面积和保证快速电荷转移,从而协同促进NiFe-LDH/V2CTx/NF在去离子水电解质(261 mV, 100 mA cm−2)和模拟海水电解质(241 mV, 100 mA cm−2)中的催化性能。本工作对析氧催化剂的制备具有指导意义,可促进海水电解的工业化。
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.