The Premium Reduction of European, American, and Perpetual Log Return Options

Stephen Taylor,Jan Vecer
{"title":"The Premium Reduction of European, American, and Perpetual Log Return Options","authors":"Stephen Taylor,Jan Vecer","doi":"10.3905/jod.2020.1.115","DOIUrl":null,"url":null,"abstract":"Traditional plain vanilla options may be regarded as contingent claims whose value depends upon the simple returns of an underlying asset. These options have convex payoffs, and as a consequence of Jensen’s inequality, their prices increase as a function of maturity in the absence of interest rates. This results in long-dated call option premia being excessively expensive in relation to the fraction of a corresponding insured portfolio. We show that replacing the simple return payoff with the log return call option payoff leads to substantial premium savings while providing the similar insurance protection. Call options on log returns have favorable prices for very long maturities on the scale of decades. This property enables them to be attractive securities for long-term investors, such as pension funds. TOPICS: Options, pension funds Key Findings ▪ This article develops valuation and risk techniques for a log return payoff option under a Geometric Brownian Motion. ▪ A comparison is made between premium advantages of the log return contract to those of traditional European options. ▪ A pricing and optimal excise boundary formula for perpetual and finite maturity American log return options id derived. ▪ This article examines long-term insurance applications of the new contract that are prohibitively expensive for traditional options.","PeriodicalId":501089,"journal":{"name":"The Journal of Derivatives","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jod.2020.1.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional plain vanilla options may be regarded as contingent claims whose value depends upon the simple returns of an underlying asset. These options have convex payoffs, and as a consequence of Jensen’s inequality, their prices increase as a function of maturity in the absence of interest rates. This results in long-dated call option premia being excessively expensive in relation to the fraction of a corresponding insured portfolio. We show that replacing the simple return payoff with the log return call option payoff leads to substantial premium savings while providing the similar insurance protection. Call options on log returns have favorable prices for very long maturities on the scale of decades. This property enables them to be attractive securities for long-term investors, such as pension funds. TOPICS: Options, pension funds Key Findings ▪ This article develops valuation and risk techniques for a log return payoff option under a Geometric Brownian Motion. ▪ A comparison is made between premium advantages of the log return contract to those of traditional European options. ▪ A pricing and optimal excise boundary formula for perpetual and finite maturity American log return options id derived. ▪ This article examines long-term insurance applications of the new contract that are prohibitively expensive for traditional options.
欧洲、美国和永久对数回报期权的减溢价
传统的普通期权可被视为或有债权,其价值取决于标的资产的简单回报。这些期权具有凸收益,并且由于詹森不等式,在没有利率的情况下,它们的价格作为期限的函数而增加。这导致长期看涨期权溢价相对于相应保险投资组合的部分过于昂贵。我们表明,用日志回报看涨期权支付代替简单的回报支付导致大量的保费节省,同时提供类似的保险保护。对数回报的看涨期权对于很长的期限(以几十年为单位)具有有利的价格。这种特性使它们成为对长期投资者(如养老基金)有吸引力的证券。本文发展了几何布朗运动下对数回报支付期权的估值和风险技术。▪比较了日志回报合同与传统欧洲期权的溢价优势。▪推导了永久和有限期限美国对数回报期权的定价和最优附加边界公式。▪本文研究了新合同的长期保险应用,这些应用对于传统期权来说过于昂贵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信