Vector textures derived from higher order derivative domains for classification of colorectal polyps

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Cao, Weiguo, Pomeroy, Marc J., Liang, Zhengrong, Abbasi, Almas F., Pickhardt, Perry J., Lu, Hongbing
{"title":"Vector textures derived from higher order derivative domains for classification of colorectal polyps","authors":"Cao, Weiguo, Pomeroy, Marc J., Liang, Zhengrong, Abbasi, Almas F., Pickhardt, Perry J., Lu, Hongbing","doi":"10.1186/s42492-022-00108-1","DOIUrl":null,"url":null,"abstract":"Textures have become widely adopted as an essential tool for lesion detection and classification through analysis of the lesion heterogeneities. In this study, higher order derivative images are being employed to combat the challenge of the poor contrast across similar tissue types among certain imaging modalities. To make good use of the derivative information, a novel concept of vector texture is firstly introduced to construct and extract several types of polyp descriptors. Two widely used differential operators, i.e., the gradient operator and Hessian operator, are utilized to generate the first and second order derivative images. These derivative volumetric images are used to produce two angle-based and two vector-based (including both angle and magnitude) textures. Next, a vector-based co-occurrence matrix is proposed to extract texture features which are fed to a random forest classifier to perform polyp classifications. To evaluate the performance of our method, experiments are implemented over a private colorectal polyp dataset obtained from computed tomographic colonography. We compare our method with four existing state-of-the-art methods and find that our method can outperform those competing methods over 4%-13% evaluated by the area under the receiver operating characteristics curves.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-022-00108-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Textures have become widely adopted as an essential tool for lesion detection and classification through analysis of the lesion heterogeneities. In this study, higher order derivative images are being employed to combat the challenge of the poor contrast across similar tissue types among certain imaging modalities. To make good use of the derivative information, a novel concept of vector texture is firstly introduced to construct and extract several types of polyp descriptors. Two widely used differential operators, i.e., the gradient operator and Hessian operator, are utilized to generate the first and second order derivative images. These derivative volumetric images are used to produce two angle-based and two vector-based (including both angle and magnitude) textures. Next, a vector-based co-occurrence matrix is proposed to extract texture features which are fed to a random forest classifier to perform polyp classifications. To evaluate the performance of our method, experiments are implemented over a private colorectal polyp dataset obtained from computed tomographic colonography. We compare our method with four existing state-of-the-art methods and find that our method can outperform those competing methods over 4%-13% evaluated by the area under the receiver operating characteristics curves.
基于高阶导数域的矢量纹理用于结直肠息肉的分类
纹理作为一种重要的工具被广泛采用,通过分析病变的异质性来进行病变检测和分类。在这项研究中,高阶导数图像被用来对抗某些成像模式中类似组织类型对比度差的挑战。为了充分利用衍生信息,首先引入矢量纹理的概念来构造和提取几种类型的息肉描述子。利用梯度算子和Hessian算子这两种常用的微分算子来生成一阶和二阶导数图像。这些衍生的体积图像用于产生两个基于角度和两个基于矢量(包括角度和幅度)的纹理。其次,提出了基于向量的共现矩阵提取纹理特征,并将纹理特征输入随机森林分类器进行息肉分类。为了评估我们的方法的性能,实验在从计算机断层结肠镜获得的私人结肠直肠息肉数据集上实施。我们将我们的方法与现有的四种最先进的方法进行了比较,发现我们的方法可以优于那些竞争方法,超过4%-13%的接受者工作特征曲线下的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信