Collision-aware interactive simulation using graph neural networks

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhu, Xin, Qian, Yinling, Wang, Qiong, Feng, Ziliang, Heng, Pheng-Ann
{"title":"Collision-aware interactive simulation using graph neural networks","authors":"Zhu, Xin, Qian, Yinling, Wang, Qiong, Feng, Ziliang, Heng, Pheng-Ann","doi":"10.1186/s42492-022-00113-4","DOIUrl":null,"url":null,"abstract":"Deep simulations have gained widespread attention owing to their excellent acceleration performances. However, these methods cannot provide effective collision detection and response strategies. We propose a deep interactive physical simulation framework that can effectively address tool-object collisions. The framework can predict the dynamic information by considering the collision state. In particular, the graph neural network is chosen as the base model, and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests. Additionally, a novel self-supervised collision term is introduced to provide a more compact collision response. This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-022-00113-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Deep simulations have gained widespread attention owing to their excellent acceleration performances. However, these methods cannot provide effective collision detection and response strategies. We propose a deep interactive physical simulation framework that can effectively address tool-object collisions. The framework can predict the dynamic information by considering the collision state. In particular, the graph neural network is chosen as the base model, and a collision-aware recursive regression module is introduced to update the network parameters recursively using interpenetration distances calculated from the vertex-face and edge-edge tests. Additionally, a novel self-supervised collision term is introduced to provide a more compact collision response. This study extensively evaluates the proposed method and shows that it effectively reduces interpenetration artifacts while ensuring high simulation efficiency.
基于图神经网络的碰撞感知交互仿真
深度仿真由于其优异的加速性能而受到广泛关注。然而,这些方法不能提供有效的碰撞检测和响应策略。我们提出了一个深度交互物理仿真框架,可以有效地解决工具-对象碰撞问题。该框架可以通过考虑碰撞状态来预测动态信息。特别地,选择图神经网络作为基本模型,并引入碰撞感知递归回归模块,利用顶点面和边缘边缘测试计算的互穿距离递归更新网络参数。此外,引入了一种新的自监督碰撞项,以提供更紧凑的碰撞响应。本研究对该方法进行了广泛的评估,结果表明该方法在保证高仿真效率的同时有效地减少了互穿伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信