Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series

Woosung Koh, Insu Choi, Yuntae Jang, Gimin Kang, Woo Chang Kim
{"title":"Curriculum Learning and Imitation Learning for Model-free Control on Financial Time-series","authors":"Woosung Koh, Insu Choi, Yuntae Jang, Gimin Kang, Woo Chang Kim","doi":"arxiv-2311.13326","DOIUrl":null,"url":null,"abstract":"Curriculum learning and imitation learning have been leveraged extensively in\nthe robotics domain. However, minimal research has been done on leveraging\nthese ideas on control tasks over highly stochastic time-series data. Here, we\ntheoretically and empirically explore these approaches in a representative\ncontrol task over complex time-series data. We implement the fundamental ideas\nof curriculum learning via data augmentation, while imitation learning is\nimplemented via policy distillation from an oracle. Our findings reveal that\ncurriculum learning should be considered a novel direction in improving\ncontrol-task performance over complex time-series. Our ample random-seed\nout-sample empirics and ablation studies are highly encouraging for curriculum\nlearning for time-series control. These findings are especially encouraging as\nwe tune all overlapping hyperparameters on the baseline -- giving an advantage\nto the baseline. On the other hand, we find that imitation learning should be\nused with caution.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.13326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Curriculum learning and imitation learning have been leveraged extensively in the robotics domain. However, minimal research has been done on leveraging these ideas on control tasks over highly stochastic time-series data. Here, we theoretically and empirically explore these approaches in a representative control task over complex time-series data. We implement the fundamental ideas of curriculum learning via data augmentation, while imitation learning is implemented via policy distillation from an oracle. Our findings reveal that curriculum learning should be considered a novel direction in improving control-task performance over complex time-series. Our ample random-seed out-sample empirics and ablation studies are highly encouraging for curriculum learning for time-series control. These findings are especially encouraging as we tune all overlapping hyperparameters on the baseline -- giving an advantage to the baseline. On the other hand, we find that imitation learning should be used with caution.
金融时间序列无模型控制的课程学习与模仿学习
课程学习和模仿学习在机器人领域得到了广泛的应用。然而,很少有研究利用这些想法对高度随机的时间序列数据进行控制任务。在这里,我们从理论上和经验上探讨了这些方法在复杂时间序列数据的代表性控制任务中。我们通过数据增强实现课程学习的基本思想,而模仿学习是通过oracle的策略蒸馏实现的。我们的研究结果表明,课程学习应该被视为在复杂时间序列中提高控制任务表现的新方向。我们大量的随机种子样本经验和消融性研究对时间序列控制的课程学习非常鼓舞人心。这些发现尤其令人鼓舞,因为我们调整了基线上所有重叠的超参数——这给基线带来了优势。另一方面,我们发现模仿学习应该谨慎使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信