Lifting query complexity to time-space complexity for two-way finite automata

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Shenggen Zheng , Yaqiao Li , Minghua Pan , Jozef Gruska , Lvzhou Li
{"title":"Lifting query complexity to time-space complexity for two-way finite automata","authors":"Shenggen Zheng ,&nbsp;Yaqiao Li ,&nbsp;Minghua Pan ,&nbsp;Jozef Gruska ,&nbsp;Lvzhou Li","doi":"10.1016/j.jcss.2023.103494","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Time-space tradeoff has been studied in a variety of models, such as Turing machines, branching programs, and </span>finite automata, etc. While communication complexity as a technique has been applied to study finite automata, it seems it has not been used to study time-space tradeoffs of finite automata. We design a new technique showing that separations of query complexity can be lifted, via communication complexity, to separations of time-space complexity of two-way finite automata. As an application, one of our main results exhibits the first example of a language </span><em>L</em> such that the time-space complexity of two-way probabilistic finite automata with a bounded error (2PFA) is <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, while of exact two-way quantum finite automata with classical states (2QCFA) is <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span><span>, that is, we demonstrate for the first time that exact quantum computing has an advantage in time-space complexity comparing to classical computing.</span></p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"141 ","pages":"Article 103494"},"PeriodicalIF":1.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000995","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Time-space tradeoff has been studied in a variety of models, such as Turing machines, branching programs, and finite automata, etc. While communication complexity as a technique has been applied to study finite automata, it seems it has not been used to study time-space tradeoffs of finite automata. We design a new technique showing that separations of query complexity can be lifted, via communication complexity, to separations of time-space complexity of two-way finite automata. As an application, one of our main results exhibits the first example of a language L such that the time-space complexity of two-way probabilistic finite automata with a bounded error (2PFA) is Ω˜(n2), while of exact two-way quantum finite automata with classical states (2QCFA) is O˜(n5/3), that is, we demonstrate for the first time that exact quantum computing has an advantage in time-space complexity comparing to classical computing.

将双向有限自动机的查询复杂度提升为时空复杂度
在图灵机、分支程序和有限自动机等各种模型中,对时空权衡进行了研究。虽然通信复杂性作为一种技术已经被应用于有限自动机的研究,但它似乎还没有被用于研究有限自动机的时空权衡。我们设计了一种新的技术,表明查询复杂性的分离可以通过通信复杂性提升到双向有限自动机的时空复杂性分离。作为一个应用,我们的主要结果之一展示了语言L的第一个例子,使得具有有界误差的双向概率有限自动机(2PFA)的时空复杂度为Ω ~ (n2),而具有经典状态的精确双向量子有限自动机(2QCFA)的时空复杂度为O ~ (n5/3),也就是说,我们首次证明了精确量子计算与经典计算相比在时空复杂度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信