Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning

An Chen, Giorgio Ferrari, Shihao Zhu
{"title":"Striking the Balance: Life Insurance Timing and Asset Allocation in Financial Planning","authors":"An Chen, Giorgio Ferrari, Shihao Zhu","doi":"arxiv-2312.02943","DOIUrl":null,"url":null,"abstract":"This paper investigates the consumption and investment decisions of an\nindividual facing uncertain lifespan and stochastic labor income within a\nBlack-Scholes market framework. A key aspect of our study involves the agent's\noption to choose when to acquire life insurance for bequest purposes. We\nexamine two scenarios: one with a fixed bequest amount and another with a\ncontrolled bequest amount. Applying duality theory and addressing free-boundary\nproblems, we analytically solve both cases, and provide explicit expressions\nfor value functions and optimal strategies in both cases. In the first\nscenario, where the bequest amount is fixed, distinct outcomes emerge based on\ndifferent levels of risk aversion parameter $\\gamma$: (i) the optimal time for\nlife insurance purchase occurs when the agent's wealth surpasses a critical\nthreshold if $\\gamma \\in (0,1)$, or (ii) life insurance should be acquired\nimmediately if $\\gamma>1$. In contrast, in the second scenario with a\ncontrolled bequest amount, regardless of $\\gamma$ values, immediate life\ninsurance purchase proves to be optimal.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the consumption and investment decisions of an individual facing uncertain lifespan and stochastic labor income within a Black-Scholes market framework. A key aspect of our study involves the agent's option to choose when to acquire life insurance for bequest purposes. We examine two scenarios: one with a fixed bequest amount and another with a controlled bequest amount. Applying duality theory and addressing free-boundary problems, we analytically solve both cases, and provide explicit expressions for value functions and optimal strategies in both cases. In the first scenario, where the bequest amount is fixed, distinct outcomes emerge based on different levels of risk aversion parameter $\gamma$: (i) the optimal time for life insurance purchase occurs when the agent's wealth surpasses a critical threshold if $\gamma \in (0,1)$, or (ii) life insurance should be acquired immediately if $\gamma>1$. In contrast, in the second scenario with a controlled bequest amount, regardless of $\gamma$ values, immediate life insurance purchase proves to be optimal.
平衡:理财规划中的寿险时机与资产配置
本文研究了在black - scholes市场框架下,面对不确定寿命和随机劳动收入的个人消费和投资决策。我们研究的一个关键方面涉及代理人选择何时为遗赠目的购买人寿保险的选择。我们研究了两种情况:一种是固定的遗赠金额,另一种是控制遗赠金额。应用对偶理论和自由边界问题,分析解决了这两种情况,并给出了两种情况下价值函数的显式表达式和最优策略。在第一种情况下,遗赠金额是固定的,基于不同水平的风险规避参数$\gamma$出现了不同的结果:(i)如果$\gamma$在(0,1)$中,代理人的财富超过临界阈值时发生购买人寿保险的最佳时间;或者(ii)如果$\gamma$ >1$,应该立即获得人寿保险。相反,在第二种情况下,控制遗赠金额,无论$\gamma$值如何,立即购买人寿保险被证明是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信