On the weak solutions for the MHD systems with controllable total energy and cross helicity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Changxing Miao , Weikui Ye
{"title":"On the weak solutions for the MHD systems with controllable total energy and cross helicity","authors":"Changxing Miao ,&nbsp;Weikui Ye","doi":"10.1016/j.matpur.2023.12.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in <span><math><mi>C</mi><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo><mo>;</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span><span> for any initial data in </span><span><math><msup><mrow><mi>H</mi></mrow><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> (<span><math><mover><mrow><mi>β</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>&gt;</mo><mn>0</mn></math></span><span>), by exhibiting that the total energy and the cross helicity<span><span> can be controlled in a given positive time interval. Our results extend the non-uniqueness results of the ideal MHD system to the viscous and resistive MHD system. Different from the ideal MHD system, the dissipative effect in the viscous and resistive MHD system prevents the </span>nonlinear term from balancing the stress error </span></span><span><math><mo>(</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>˚</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> as doing in <span>[4]</span>. We introduce the box flows and construct the perturbation consisting in seven different kinds of flows in convex integral scheme, which ensures that the iteration works and yields the non-uniqueness.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in C([0,T];L2(T3)) for any initial data in Hβ¯(T3) (β¯>0), by exhibiting that the total energy and the cross helicity can be controlled in a given positive time interval. Our results extend the non-uniqueness results of the ideal MHD system to the viscous and resistive MHD system. Different from the ideal MHD system, the dissipative effect in the viscous and resistive MHD system prevents the nonlinear term from balancing the stress error (R˚q,M˚q) as doing in [4]. We introduce the box flows and construct the perturbation consisting in seven different kinds of flows in convex integral scheme, which ensures that the iteration works and yields the non-uniqueness.

总能量和交叉螺旋度可控MHD系统的弱解
本文证明了C([0,T];L2(T3))中任意初始数据在Hβ¯(T3) (β¯>0)中的三维磁流体动力学(MHD)系统的非唯一性,证明了总能量和交叉螺旋度可以在给定的正时间区间内控制。我们的结果将理想MHD系统的非唯一性结果推广到粘阻MHD系统。与理想的MHD系统不同,粘阻MHD系统中的耗散效应使得非线性项无法像[4]那样平衡应力误差(R˚q,M˚q)。在凸积分格式中引入盒状流,构造了由七种不同流组成的扰动,保证了迭代的有效性和非唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信