High-order estimates for fully nonlinear equations under weak concavity assumptions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alessandro Goffi
{"title":"High-order estimates for fully nonlinear equations under weak concavity assumptions","authors":"Alessandro Goffi","doi":"10.1016/j.matpur.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a priori and regularity estimates of Evans-Krylov type in Hölder spaces for fully nonlinear uniformly elliptic and parabolic equations of second order when the operator fails to be concave or convex in the space of symmetric matrices. In particular, it is assumed that either the level sets are convex or the operator is concave, convex or close to a linear function near infinity. As a byproduct, these results imply polynomial Liouville theorems for entire solutions of elliptic equations and for ancient solutions to parabolic problems.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782423001575/pdfft?md5=ba1f0f1482cc16cb5e4884edc4186dea&pid=1-s2.0-S0021782423001575-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies a priori and regularity estimates of Evans-Krylov type in Hölder spaces for fully nonlinear uniformly elliptic and parabolic equations of second order when the operator fails to be concave or convex in the space of symmetric matrices. In particular, it is assumed that either the level sets are convex or the operator is concave, convex or close to a linear function near infinity. As a byproduct, these results imply polynomial Liouville theorems for entire solutions of elliptic equations and for ancient solutions to parabolic problems.

弱凹性假设下全非线性方程的高阶估计
本文研究了二阶完全非线性一致椭圆型和抛物型方程在对称矩阵空间中算子不能凹或凸时,在Hölder空间中Evans-Krylov型的先验估计和正则性估计。特别是,假设水平集是凸的,或者算子是凹的、凸的,或者接近于一个接近无穷大的线性函数。作为一个副产品,这些结果意味着多项式刘维尔定理对椭圆方程的全解和抛物问题的古老解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信