The convergence rate of the equilibrium measure for the hybrid LQG Mean Field Game

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Jiamin Jian , Peiyao Lai , Qingshuo Song , Jiaxuan Ye
{"title":"The convergence rate of the equilibrium measure for the hybrid LQG Mean Field Game","authors":"Jiamin Jian ,&nbsp;Peiyao Lai ,&nbsp;Qingshuo Song ,&nbsp;Jiaxuan Ye","doi":"10.1016/j.nahs.2023.101454","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work, we study the convergence rate of the </span><span><math><mi>N</mi></math></span><span><span>-player Linear-Quadratic-Gaussian (LQG) game with a Markov chain common noise towards its asymptotic Mean Field Game. By postulating a Markovian structure via two auxiliary processes for the first and second moments of the Mean Field Game equilibrium and applying the fixed point condition in Mean Field Game, we first provide the characterization of the </span>equilibrium measure<span> in Mean Field Game with a finite-dimensional Riccati system of ODEs. Additionally, with an explicit coupling of the optimal trajectory of the </span></span><span><math><mi>N</mi></math></span>-player game driven by <span><math><mi>N</mi></math></span> dimensional Brownian motion and Mean Field Game counterpart driven by one-dimensional Brownian motion, we obtain the convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> with respect to 2-Wasserstein distance.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"52 ","pages":"Article 101454"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X23001255","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the convergence rate of the N-player Linear-Quadratic-Gaussian (LQG) game with a Markov chain common noise towards its asymptotic Mean Field Game. By postulating a Markovian structure via two auxiliary processes for the first and second moments of the Mean Field Game equilibrium and applying the fixed point condition in Mean Field Game, we first provide the characterization of the equilibrium measure in Mean Field Game with a finite-dimensional Riccati system of ODEs. Additionally, with an explicit coupling of the optimal trajectory of the N-player game driven by N dimensional Brownian motion and Mean Field Game counterpart driven by one-dimensional Brownian motion, we obtain the convergence rate O(N1/2) with respect to 2-Wasserstein distance.

混合 LQG 平均场博弈均衡度量的收敛速率
在这项研究中,我们研究了具有马尔可夫链普通噪声的N人线性-二次-高斯(LQG)博弈向其渐近平均场博弈的收敛速率。通过对平均场博弈均衡的第一矩和第二矩的两个辅助过程假设马尔可夫结构,并应用平均场博弈中的定点条件,我们首先用一个有限维 Riccati ODEs 系统提供了平均场博弈均衡度量的特征。此外,通过将 N 维布朗运动驱动的 N 人博弈最优轨迹与一维布朗运动驱动的平均场博弈最优轨迹明确耦合,我们得到了相对于 2-Wasserstein 距离的收敛率 O(N-1/2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信