{"title":"A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection","authors":"Ajay Dadhich , Jaideep Patel , Rovin Tiwari , Richa Verma , Pratha Mishra , Jay Kumar Jain","doi":"10.1016/j.health.2023.100286","DOIUrl":null,"url":null,"abstract":"<div><p>Mind-wandering (MW) is when an individual’s concentration drifts away from the task or activity. Researchers found a greater variability in electroencephalogram (EEG) signals due to MW. Collecting more nuanced information from raw EEG data to examine the harmful effects of MW is time-consuming. This study proposes a multi-resolution assessment of EEG signals using the flexible analytic wavelet transform (FAWT). The FAWT algorithm decomposes raw EEG data into more representative sub-bands (SBs). Several statistical characteristics are derived from the obtained SBs, and the effects of MW during meditation on the EEG signals are investigated. A set of significant characteristics is chosen and fed into the machine learning modules using a 10-fold validation approach to detect MW subjects automatically. Our proposed framework attained the highest classification accuracy of 92.41%, the highest sensitivity of 93.56%, and the highest specificity of 91.97%. The proposed framework can be used to design a suitable brain-computer interface (BCI) system to reduce MW and increase meditation depth for holistic and long-term health in society.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100286"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001533/pdfft?md5=0e13356690ac60fc60e86dfd0f053b46&pid=1-s2.0-S2772442523001533-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mind-wandering (MW) is when an individual’s concentration drifts away from the task or activity. Researchers found a greater variability in electroencephalogram (EEG) signals due to MW. Collecting more nuanced information from raw EEG data to examine the harmful effects of MW is time-consuming. This study proposes a multi-resolution assessment of EEG signals using the flexible analytic wavelet transform (FAWT). The FAWT algorithm decomposes raw EEG data into more representative sub-bands (SBs). Several statistical characteristics are derived from the obtained SBs, and the effects of MW during meditation on the EEG signals are investigated. A set of significant characteristics is chosen and fed into the machine learning modules using a 10-fold validation approach to detect MW subjects automatically. Our proposed framework attained the highest classification accuracy of 92.41%, the highest sensitivity of 93.56%, and the highest specificity of 91.97%. The proposed framework can be used to design a suitable brain-computer interface (BCI) system to reduce MW and increase meditation depth for holistic and long-term health in society.