A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection

Ajay Dadhich , Jaideep Patel , Rovin Tiwari , Richa Verma , Pratha Mishra , Jay Kumar Jain
{"title":"A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection","authors":"Ajay Dadhich ,&nbsp;Jaideep Patel ,&nbsp;Rovin Tiwari ,&nbsp;Richa Verma ,&nbsp;Pratha Mishra ,&nbsp;Jay Kumar Jain","doi":"10.1016/j.health.2023.100286","DOIUrl":null,"url":null,"abstract":"<div><p>Mind-wandering (MW) is when an individual’s concentration drifts away from the task or activity. Researchers found a greater variability in electroencephalogram (EEG) signals due to MW. Collecting more nuanced information from raw EEG data to examine the harmful effects of MW is time-consuming. This study proposes a multi-resolution assessment of EEG signals using the flexible analytic wavelet transform (FAWT). The FAWT algorithm decomposes raw EEG data into more representative sub-bands (SBs). Several statistical characteristics are derived from the obtained SBs, and the effects of MW during meditation on the EEG signals are investigated. A set of significant characteristics is chosen and fed into the machine learning modules using a 10-fold validation approach to detect MW subjects automatically. Our proposed framework attained the highest classification accuracy of 92.41%, the highest sensitivity of 93.56%, and the highest specificity of 91.97%. The proposed framework can be used to design a suitable brain-computer interface (BCI) system to reduce MW and increase meditation depth for holistic and long-term health in society.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100286"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001533/pdfft?md5=0e13356690ac60fc60e86dfd0f053b46&pid=1-s2.0-S2772442523001533-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mind-wandering (MW) is when an individual’s concentration drifts away from the task or activity. Researchers found a greater variability in electroencephalogram (EEG) signals due to MW. Collecting more nuanced information from raw EEG data to examine the harmful effects of MW is time-consuming. This study proposes a multi-resolution assessment of EEG signals using the flexible analytic wavelet transform (FAWT). The FAWT algorithm decomposes raw EEG data into more representative sub-bands (SBs). Several statistical characteristics are derived from the obtained SBs, and the effects of MW during meditation on the EEG signals are investigated. A set of significant characteristics is chosen and fed into the machine learning modules using a 10-fold validation approach to detect MW subjects automatically. Our proposed framework attained the highest classification accuracy of 92.41%, the highest sensitivity of 93.56%, and the highest specificity of 91.97%. The proposed framework can be used to design a suitable brain-computer interface (BCI) system to reduce MW and increase meditation depth for holistic and long-term health in society.

基于脑电图的冥想思维游走检测的灵活分析小波变换和集合袋装树模型
思维游离(MW)是指一个人的注意力偏离任务或活动。研究人员发现,MW 会导致脑电图(EEG)信号的更大变化。从原始脑电图数据中收集更多细微信息来研究 MW 的有害影响非常耗时。本研究提出使用灵活分析小波变换(FAWT)对脑电信号进行多分辨率评估。FAWT 算法将原始脑电图数据分解为更具代表性的子带 (SB)。从获得的子带中得出若干统计特征,并研究了冥想时 MW 对脑电信号的影响。我们选择了一组重要的特征,并将其输入机器学习模块,使用 10 倍验证方法自动检测 MW 受试者。我们提出的框架达到了 92.41% 的最高分类准确率、93.56% 的最高灵敏度和 91.97% 的最高特异性。所提出的框架可用于设计合适的脑机接口(BCI)系统,以减少MW和增加冥想深度,从而促进社会的整体和长期健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信