Adam M. Daly, Rhett P. Hill, Myla G. Gonzalez, Stephen G. Kukolich
{"title":"Microwave measurements and structure calculations for a glyoxylic acid – Water complex","authors":"Adam M. Daly, Rhett P. Hill, Myla G. Gonzalez, Stephen G. Kukolich","doi":"10.1016/j.jms.2023.111862","DOIUrl":null,"url":null,"abstract":"<div><p>The microwave spectra for a hydrogen-bonded <em>trans</em>-2 glyoxylic acid–water complex were measured in the 6–16 GHz frequency range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The rotational constants for the dimer were determined to have the following values: A = 9384.2354(31), B = 1707.63973(73), and C = 1447.44879(56) MHz. The hydrogen bonded structures and rotational constants were calculated for the lowest energy dimglyoxylic acid - water using DFT, MP2 and CCSD calculations with various basis sets. The B3LYP/aug-cc-PVQZ-DG3 calculations yielded rotational constants of A = 9393.59, B = 1713.76, and C = 1453.23 MHz, in very good agreement with experimental values. The calculations show two feasible tunneling motions involving hydrogen atoms in this complex.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"399 ","pages":"Article 111862"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223001273","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The microwave spectra for a hydrogen-bonded trans-2 glyoxylic acid–water complex were measured in the 6–16 GHz frequency range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The rotational constants for the dimer were determined to have the following values: A = 9384.2354(31), B = 1707.63973(73), and C = 1447.44879(56) MHz. The hydrogen bonded structures and rotational constants were calculated for the lowest energy dimglyoxylic acid - water using DFT, MP2 and CCSD calculations with various basis sets. The B3LYP/aug-cc-PVQZ-DG3 calculations yielded rotational constants of A = 9393.59, B = 1713.76, and C = 1453.23 MHz, in very good agreement with experimental values. The calculations show two feasible tunneling motions involving hydrogen atoms in this complex.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.