Grace L Minnes, Anna J Wiener, Anna E Liley, Nicholas W Simon
{"title":"Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making.","authors":"Grace L Minnes, Anna J Wiener, Anna E Liley, Nicholas W Simon","doi":"10.3758/s13415-023-01139-8","DOIUrl":null,"url":null,"abstract":"<p><p>Effective decision-making involves careful consideration of all rewarding and aversive outcomes. Importantly, negative outcomes often occur later in time, leading to underestimation, or \"discounting,\" of these consequences. Despite the frequent occurrence of delayed outcomes, little is known about the neurobiology underlying sensitivity to delayed punishment during decision-making. The Delayed Punishment Decision-making Task (DPDT) addresses this by assessing sensitivity to delayed versus immediate punishment in rats. Rats initially avoid punished reinforcers, then select this option more frequently when delay precedes punishment. We used DPDT to examine effects of acute systemic administration of catecholaminergic drugs on sensitivity to delayed punishment in male and female adult rats. Cocaine did not affect choice of rewards with immediate punishment but caused a dose-dependent reduction in choice of delayed punishment. Neither activation nor blockade of D1-like dopamine receptor affected decision-making, but activation of D2-like dopamine receptors reduced choice of delayed punishment. D2 blockade did not attenuate cocaine's effects on decision-making, suggesting that cocaine's effects are not dependent on D2 receptor activation. Increasing synaptic norepinephrine via atomoxetine also reduced choice of delayed (but not immediate) punishment. Notably, when DPDT was modified from ascending to descending pre-punishment delays, these drugs did not affect choice of delayed or immediate punishment, although high-dose quinpirole impaired behavioral flexibility. In summary, sensitivity to delayed punishment is regulated by both dopamine and norepinephrine transmission in task-specific fashion. Understanding the neurochemical modulation of decision-making with delayed punishment is a critical step toward treating disorders characterized by aberrant sensitivity to negative consequences.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-023-01139-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Effective decision-making involves careful consideration of all rewarding and aversive outcomes. Importantly, negative outcomes often occur later in time, leading to underestimation, or "discounting," of these consequences. Despite the frequent occurrence of delayed outcomes, little is known about the neurobiology underlying sensitivity to delayed punishment during decision-making. The Delayed Punishment Decision-making Task (DPDT) addresses this by assessing sensitivity to delayed versus immediate punishment in rats. Rats initially avoid punished reinforcers, then select this option more frequently when delay precedes punishment. We used DPDT to examine effects of acute systemic administration of catecholaminergic drugs on sensitivity to delayed punishment in male and female adult rats. Cocaine did not affect choice of rewards with immediate punishment but caused a dose-dependent reduction in choice of delayed punishment. Neither activation nor blockade of D1-like dopamine receptor affected decision-making, but activation of D2-like dopamine receptors reduced choice of delayed punishment. D2 blockade did not attenuate cocaine's effects on decision-making, suggesting that cocaine's effects are not dependent on D2 receptor activation. Increasing synaptic norepinephrine via atomoxetine also reduced choice of delayed (but not immediate) punishment. Notably, when DPDT was modified from ascending to descending pre-punishment delays, these drugs did not affect choice of delayed or immediate punishment, although high-dose quinpirole impaired behavioral flexibility. In summary, sensitivity to delayed punishment is regulated by both dopamine and norepinephrine transmission in task-specific fashion. Understanding the neurochemical modulation of decision-making with delayed punishment is a critical step toward treating disorders characterized by aberrant sensitivity to negative consequences.
期刊介绍:
Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.