Bryndan Lindsey, C Hanley, L Reider, S Snyder, Y Zhou, E Bell, J Shim, J-O Hahn, M Vignos, E Bar-Kochba
{"title":"Accuracy of heart rate measured by military-grade wearable ECG monitor compared with reference and commercial monitors.","authors":"Bryndan Lindsey, C Hanley, L Reider, S Snyder, Y Zhou, E Bell, J Shim, J-O Hahn, M Vignos, E Bar-Kochba","doi":"10.1136/military-2023-002541","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Physiological monitoring of soldiers can indicate combat readiness and performance. Despite demonstrated use of wearable devices for HR monitoring, commercial options lack desired military features. A newly developed OMNI monitor includes desired features such as long-range secure data transmission. This study investigated the accuracy of the OMNI to measure HR via accuracy of R-R interval duration relative to research-grade ECG and commercial products.</p><p><strong>Methods: </strong>54 healthy individuals (male/female=37/17, age=22.2±3.6 years, height=173.0±9.1 cm, weight=70.1±11.2 kg) completed a submaximal exercise test while wearing a reference ECG (Biopac) and a randomly assigned chest-based monitor (OMNI, Polar H10, Equivital EQ-02, Zephyr Bioharness 3). All participants also wore two wrist-based photoplethysmography (PPG) devices, Garmin fēnix 6 and Empatica E4. Bland-Altman analyses of agreement, concordance correlation coefficient (CCC) and root-mean-squared error (RMSE) were used to determine accuracy of the OMNI and commercial devices relative to Biopac. Additionally, a linear mixed-effects model evaluated the effects of device and exercise intensity on agreement.</p><p><strong>Results: </strong>Chest-based devices showed superior agreement with Biopac for measuring R-R interval compared with wrist-based ones in terms of mean bias, CCC and RMSE, with OMNI demonstrating the best scores on all metrics. Linear mixed-effects model showed no significant main or interaction effects for the chest-based devices. However, significant effects were found for Garmin and Empatica devices (p<0.001) as well as the interaction effects between both Garmin and Empatica and exercise intensity (p<0.001).</p><p><strong>Conclusions: </strong>Chest-based ECG devices are preferred to wrist-based PPG devices due to superior HR accuracy over a range of exercise intensities, with the OMNI device demonstrating equal, if not superior, performance to other commercial ECG monitors. Additionally, wrist-based PPG devices are significantly affected by exercise intensity as they underestimate HR at low intensities and overestimate HR at high intensities.</p>","PeriodicalId":48485,"journal":{"name":"Bmj Military Health","volume":" ","pages":"144-149"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bmj Military Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/military-2023-002541","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Physiological monitoring of soldiers can indicate combat readiness and performance. Despite demonstrated use of wearable devices for HR monitoring, commercial options lack desired military features. A newly developed OMNI monitor includes desired features such as long-range secure data transmission. This study investigated the accuracy of the OMNI to measure HR via accuracy of R-R interval duration relative to research-grade ECG and commercial products.
Methods: 54 healthy individuals (male/female=37/17, age=22.2±3.6 years, height=173.0±9.1 cm, weight=70.1±11.2 kg) completed a submaximal exercise test while wearing a reference ECG (Biopac) and a randomly assigned chest-based monitor (OMNI, Polar H10, Equivital EQ-02, Zephyr Bioharness 3). All participants also wore two wrist-based photoplethysmography (PPG) devices, Garmin fēnix 6 and Empatica E4. Bland-Altman analyses of agreement, concordance correlation coefficient (CCC) and root-mean-squared error (RMSE) were used to determine accuracy of the OMNI and commercial devices relative to Biopac. Additionally, a linear mixed-effects model evaluated the effects of device and exercise intensity on agreement.
Results: Chest-based devices showed superior agreement with Biopac for measuring R-R interval compared with wrist-based ones in terms of mean bias, CCC and RMSE, with OMNI demonstrating the best scores on all metrics. Linear mixed-effects model showed no significant main or interaction effects for the chest-based devices. However, significant effects were found for Garmin and Empatica devices (p<0.001) as well as the interaction effects between both Garmin and Empatica and exercise intensity (p<0.001).
Conclusions: Chest-based ECG devices are preferred to wrist-based PPG devices due to superior HR accuracy over a range of exercise intensities, with the OMNI device demonstrating equal, if not superior, performance to other commercial ECG monitors. Additionally, wrist-based PPG devices are significantly affected by exercise intensity as they underestimate HR at low intensities and overestimate HR at high intensities.