{"title":"Neural reactivation during human sleep.","authors":"Dan Denis, Scott A Cairney","doi":"10.1042/ETLS20230109","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.