Nanostructured Li2S Cathodes for Silicon–Sulfur Batteries

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hamid Mollania, Chaoqi Zhang, Ruifeng Du, Xueqiang Qi*, Junshan Li, Sharona Horta, Maria Ibañez, Caroline Keller, Pascale Chenevier, Majid Oloomi-Buygi* and Andreu Cabot*, 
{"title":"Nanostructured Li2S Cathodes for Silicon–Sulfur Batteries","authors":"Hamid Mollania,&nbsp;Chaoqi Zhang,&nbsp;Ruifeng Du,&nbsp;Xueqiang Qi*,&nbsp;Junshan Li,&nbsp;Sharona Horta,&nbsp;Maria Ibañez,&nbsp;Caroline Keller,&nbsp;Pascale Chenevier,&nbsp;Majid Oloomi-Buygi* and Andreu Cabot*,&nbsp;","doi":"10.1021/acsami.3c14072","DOIUrl":null,"url":null,"abstract":"<p >Lithium–sulfur batteries are regarded as an advantageous option for meeting the growing demand for high-energy-density storage, but their commercialization relies on solving the current limitations of both sulfur cathodes and lithium metal anodes. In this scenario, the implementation of lithium sulfide (Li<sub>2</sub>S) cathodes compatible with alternative anode materials such as silicon has the potential to alleviate the safety concerns associated with lithium metal. In this direction, here, we report a sulfur cathode based on Li<sub>2</sub>S nanocrystals grown on a catalytic host consisting of CoFeP nanoparticles supported on tubular carbon nitride. Nanosized Li<sub>2</sub>S is incorporated into the host by a scalable liquid infiltration–evaporation method. Theoretical calculations and experimental results demonstrate that the CoFeP–CN composite can boost the polysulfide adsorption/conversion reaction kinetics and strongly reduce the initial overpotential activation barrier by stretching the Li–S bonds of Li<sub>2</sub>S. Besides, the ultrasmall size of the Li<sub>2</sub>S particles in the Li<sub>2</sub>S–CoFeP–CN composite cathode facilitates the initial activation. Overall, the Li<sub>2</sub>S–CoFeP–CN electrodes exhibit a low activation barrier of 2.56 V, a high initial capacity of 991 mA h g<sub>Li<sub>2</sub>S</sub><sup>–1</sup>, and outstanding cyclability with a small fading rate of 0.029% per cycle over 800 cycles. Moreover, Si/Li<sub>2</sub>S full cells are assembled using the nanostructured Li<sub>2</sub>S–CoFeP–CN cathode and a prelithiated anode based on graphite-supported silicon nanowires. These Si/Li<sub>2</sub>S cells demonstrate high initial discharge capacities above 900 mA h g<sub>Li<sub>2</sub>S</sub><sup>–1</sup> and good cyclability with a capacity fading rate of 0.28% per cycle over 150 cycles.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 50","pages":"58462–58475"},"PeriodicalIF":8.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c14072","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium–sulfur batteries are regarded as an advantageous option for meeting the growing demand for high-energy-density storage, but their commercialization relies on solving the current limitations of both sulfur cathodes and lithium metal anodes. In this scenario, the implementation of lithium sulfide (Li2S) cathodes compatible with alternative anode materials such as silicon has the potential to alleviate the safety concerns associated with lithium metal. In this direction, here, we report a sulfur cathode based on Li2S nanocrystals grown on a catalytic host consisting of CoFeP nanoparticles supported on tubular carbon nitride. Nanosized Li2S is incorporated into the host by a scalable liquid infiltration–evaporation method. Theoretical calculations and experimental results demonstrate that the CoFeP–CN composite can boost the polysulfide adsorption/conversion reaction kinetics and strongly reduce the initial overpotential activation barrier by stretching the Li–S bonds of Li2S. Besides, the ultrasmall size of the Li2S particles in the Li2S–CoFeP–CN composite cathode facilitates the initial activation. Overall, the Li2S–CoFeP–CN electrodes exhibit a low activation barrier of 2.56 V, a high initial capacity of 991 mA h gLi2S–1, and outstanding cyclability with a small fading rate of 0.029% per cycle over 800 cycles. Moreover, Si/Li2S full cells are assembled using the nanostructured Li2S–CoFeP–CN cathode and a prelithiated anode based on graphite-supported silicon nanowires. These Si/Li2S cells demonstrate high initial discharge capacities above 900 mA h gLi2S–1 and good cyclability with a capacity fading rate of 0.28% per cycle over 150 cycles.

Abstract Image

Abstract Image

用于硅硫电池的纳米结构 Li2S 阴极。
锂硫电池被认为是满足日益增长的高能量密度存储需求的有利选择,但其商业化有赖于解决目前硫阴极和锂金属阳极的局限性。在这种情况下,采用与硅等替代阳极材料兼容的硫化锂(Li2S)阴极有可能减轻与金属锂相关的安全问题。在这个方向上,我们在此报告了一种硫阴极,它基于生长在氮化碳管状支撑的 CoFeP 纳米粒子催化宿主上的 Li2S 纳米晶体。纳米级 Li2S 是通过一种可扩展的液态渗透-蒸发方法加入到宿主中的。理论计算和实验结果表明,CoFeP-CN 复合材料可通过拉伸 Li2S 的 Li-S 键来促进多硫化物吸附/转化反应动力学,并大大降低初始过电位活化势垒。此外,Li2S-CoFeP-CN 复合阴极中 Li2S 粒子的超小尺寸也有利于初始活化。总体而言,Li2S-CoFeP-CN 电极具有 2.56 V 的低活化势垒、991 mA h gLi2S-1 的高初始容量和出色的循环能力,在 800 次循环中,每次循环的衰减率仅为 0.029%。此外,利用纳米结构的 Li2S-CoFeP-CN 阴极和基于石墨支撑硅纳米线的预锂化阳极组装了 Si/Li2S 全电池。这些硅/Li2S 电池显示出高于 900 mA h gLi2S-1 的高初始放电容量和良好的可循环性,在 150 个循环中,每个循环的容量衰减率为 0.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信