Control of selectivity in the oxidation of 5-hydroxymethylfurfural to 5- formyl-2-furancarboxylic acid catalyzed by laccase in a multiphasic gas-liquid microbioreactor
Aura Araya , Nadia Guajardo , María Elena Lienqueo
{"title":"Control of selectivity in the oxidation of 5-hydroxymethylfurfural to 5- formyl-2-furancarboxylic acid catalyzed by laccase in a multiphasic gas-liquid microbioreactor","authors":"Aura Araya , Nadia Guajardo , María Elena Lienqueo","doi":"10.1016/j.biortech.2023.130154","DOIUrl":null,"url":null,"abstract":"<div><p>The selectivity of 5-formyl-2-furancarboxylic acid (FFCA) was studied in a batch bioreactor and microbioreactors with different internal diameters (ID). Using microbioreactors, the effect of the flow rate of the liquid and gas phase on the yield, space time yield (STY<sub>FFCA</sub>), and gas–liquid mixture velocity (U<sub>M</sub>) of the reaction was evaluated. The biooxidation in flow microbioreactors, a selectivity of 100 % for FFCA was achieved, while with the batch bioreactor at the same substrate concentration a selectivity of 6.7 % was obtained. The highest yield (30 %) with 15 mM of 5-hydroxymethylfurfural (HMF) was reached at a gas–liquid flow rate of 0.5 µL/min and the highest STY<sub>FFCA</sub> (0.07 mol m<sup>−3</sup> min<sup>−1</sup>) was achieved at a gas–liquid flow rate of 1.5 µL/min with the microbioreactor with an ID of 0.5 mm. The U<sub>M</sub> values (0.5 to 1.6 cm min<sup>1</sup>) indicated that the reaction takes place under a kinetic regime without mass transfer limitations.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"394 ","pages":"Article 130154"},"PeriodicalIF":9.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852423015821","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The selectivity of 5-formyl-2-furancarboxylic acid (FFCA) was studied in a batch bioreactor and microbioreactors with different internal diameters (ID). Using microbioreactors, the effect of the flow rate of the liquid and gas phase on the yield, space time yield (STYFFCA), and gas–liquid mixture velocity (UM) of the reaction was evaluated. The biooxidation in flow microbioreactors, a selectivity of 100 % for FFCA was achieved, while with the batch bioreactor at the same substrate concentration a selectivity of 6.7 % was obtained. The highest yield (30 %) with 15 mM of 5-hydroxymethylfurfural (HMF) was reached at a gas–liquid flow rate of 0.5 µL/min and the highest STYFFCA (0.07 mol m−3 min−1) was achieved at a gas–liquid flow rate of 1.5 µL/min with the microbioreactor with an ID of 0.5 mm. The UM values (0.5 to 1.6 cm min1) indicated that the reaction takes place under a kinetic regime without mass transfer limitations.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.