{"title":"Classification and spectrum optimization method of grease based on infrared spectrum","authors":"Xin Feng, Yanqiu Xia, Peiyuan Xie, Xiaohe Li","doi":"10.1007/s40544-023-0786-y","DOIUrl":null,"url":null,"abstract":"<p>The infrared (IR) absorption spectral data of 63 kinds of lubricating greases containing six different types of thickeners were obtained using the IR spectroscopy. The Kohonen neural network algorithm was used to identify the type of the lubricating grease. The results show that this machine learning method can effectively eliminate the interference fringes in the IR spectrum, and complete the feature selection and dimensionality reduction of the high-dimensional spectral data. The 63 kinds of greases exhibit spatial clustering under certain IR spectrum recognition spectral bands, which are linked to characteristic peaks of lubricating greases and improve the recognition accuracy of these greases. The model achieved recognition accuracy of 100.00%, 96.08%, 94.87%, 100.00%, and 87.50% for polyurea grease, calcium sulfonate composite grease, aluminum (Al)-based grease, bentonite grease, and lithium-based grease, respectively. Based on the different IR absorption spectrum bands produced by each kind of lubricating grease, the three-dimensional spatial distribution map of the lubricating grease drawn also verifies the accuracy of classification while recognizing the accuracy. This paper demonstrates fast recognition speed and high accuracy, proving that the Kohonen neural network algorithm has an efficient recognition ability for identifying the types of the lubricating grease.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0786-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The infrared (IR) absorption spectral data of 63 kinds of lubricating greases containing six different types of thickeners were obtained using the IR spectroscopy. The Kohonen neural network algorithm was used to identify the type of the lubricating grease. The results show that this machine learning method can effectively eliminate the interference fringes in the IR spectrum, and complete the feature selection and dimensionality reduction of the high-dimensional spectral data. The 63 kinds of greases exhibit spatial clustering under certain IR spectrum recognition spectral bands, which are linked to characteristic peaks of lubricating greases and improve the recognition accuracy of these greases. The model achieved recognition accuracy of 100.00%, 96.08%, 94.87%, 100.00%, and 87.50% for polyurea grease, calcium sulfonate composite grease, aluminum (Al)-based grease, bentonite grease, and lithium-based grease, respectively. Based on the different IR absorption spectrum bands produced by each kind of lubricating grease, the three-dimensional spatial distribution map of the lubricating grease drawn also verifies the accuracy of classification while recognizing the accuracy. This paper demonstrates fast recognition speed and high accuracy, proving that the Kohonen neural network algorithm has an efficient recognition ability for identifying the types of the lubricating grease.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.