Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Friction Pub Date : 2023-12-04 DOI:10.1007/s40544-021-0777-z
Zhen-Yu Zhou, Qiu-Yang Zheng, Yu Li, Cong Ding, Guang-Jian Peng, Zhong-Yu Piao
{"title":"Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy","authors":"Zhen-Yu Zhou, Qiu-Yang Zheng, Yu Li, Cong Ding, Guang-Jian Peng, Zhong-Yu Piao","doi":"10.1007/s40544-021-0777-z","DOIUrl":null,"url":null,"abstract":"<p>The gradient nanostructure is machined on the aluminum (Al) alloy by the two-dimensional ultrasonic surface burnishing process (2D-USBP). The mechanism of why the gradient nanostructure enhances wear resistance is investigated. The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms. The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity (CP) finite element and molecular dynamics (MD) models. The characterization results show that the 2D-USBP sample prepared a gradient structure of ∼600 µm thick on the aluminum surface, increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa. The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample, with 41.20%, 39.07%, and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5, 10, and 15 N loads, respectively. The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation; meanwhile, the resistance to deformation, adhesion, and crack initiation and propagation of the sample surface is improved, resulting in enhanced wear resistance.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 53","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-021-0777-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

Abstract

The gradient nanostructure is machined on the aluminum (Al) alloy by the two-dimensional ultrasonic surface burnishing process (2D-USBP). The mechanism of why the gradient nanostructure enhances wear resistance is investigated. The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms. The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity (CP) finite element and molecular dynamics (MD) models. The characterization results show that the 2D-USBP sample prepared a gradient structure of ∼600 µm thick on the aluminum surface, increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa. The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample, with 41.20%, 39.07%, and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5, 10, and 15 N loads, respectively. The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation; meanwhile, the resistance to deformation, adhesion, and crack initiation and propagation of the sample surface is improved, resulting in enhanced wear resistance.

Abstract Image

二维超声表面抛光工艺提高铝合金耐磨性的机理研究
采用二维超声表面抛光工艺(2D-USBP)在铝合金表面加工出梯度纳米结构。研究了梯度纳米结构增强耐磨性的机理。通过操作纳米压头、透射电子显微镜(TEM)和电子背散射衍射(EBSD)对梯度纳米结构的力学性能和微观结构进行了表征。在加工前后对样品进行干磨损试验,评价其耐磨性和机理。通过建立晶体塑性(CP)有限元和分子动力学(MD)模型,探讨了梯度纳米结构对材料耐磨性的影响。表征结果表明,2D-USBP样品在铝表面形成了厚度为~ 600µm的梯度结构,使铝表面硬度从1.13提高到1.71 GPa,弹性模量从78.84降低到70.14 GPa。表面微观结构的优化和力学性能的提高有效地增强了试样的耐磨性,在5、10和15 N载荷作用下,2D-USBP处理后试样的磨损疤痕面积分别为原始试样的41.20%、39.07%和54.58%。梯度纳米结构抑制了磨损过程中位错在试样内部的滑移,减小了塑性变形的尺寸和范围;同时,提高了试样表面的抗变形、抗粘附、抗裂纹萌生和扩展能力,从而增强了耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信