Anti-icing and weatherability study of superhydrophobic titanium metal matrix composites surface

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Cui Jing , Wang Yifan , Wang Chengxuan , Yang Guangfeng
{"title":"Anti-icing and weatherability study of superhydrophobic titanium metal matrix composites surface","authors":"Cui Jing ,&nbsp;Wang Yifan ,&nbsp;Wang Chengxuan ,&nbsp;Yang Guangfeng","doi":"10.1016/j.colcom.2023.100759","DOIUrl":null,"url":null,"abstract":"<div><p>Superhydrophobic surfaces have received much attention from academia and industry for their promising applications, which can significantly expand the comprehensive performance of composite materials. Thus, this paper demonstrated a low-cost and simple method to fabricate arrays of micro−/nano-structure surfaces similar to rice leaves through laser micro texturing, modified with polydimethylsiloxane (PDMS) to produce physicochemically coupling texture hydrophobic surfaces, and then investigate the surface's resistance to ice and weathering under environmental damage. After tens of circulating for coagulation and thawing frost and shocking of water, the surface can remain hydrophobic, while the hydrophobic groups and structures on the surface can remain hydrophobic under hundreds of times of stripping and friction, which shows good weather ability. In summary, a practical reference for titanium metal matrix composite surfaces is provided, realizing superhydrophobicity and ice suppression functions and expanding its scenario applications.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"58 ","pages":"Article 100759"},"PeriodicalIF":4.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038223000663/pdfft?md5=463372bbf4600402f7822435afdf87f0&pid=1-s2.0-S2215038223000663-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Superhydrophobic surfaces have received much attention from academia and industry for their promising applications, which can significantly expand the comprehensive performance of composite materials. Thus, this paper demonstrated a low-cost and simple method to fabricate arrays of micro−/nano-structure surfaces similar to rice leaves through laser micro texturing, modified with polydimethylsiloxane (PDMS) to produce physicochemically coupling texture hydrophobic surfaces, and then investigate the surface's resistance to ice and weathering under environmental damage. After tens of circulating for coagulation and thawing frost and shocking of water, the surface can remain hydrophobic, while the hydrophobic groups and structures on the surface can remain hydrophobic under hundreds of times of stripping and friction, which shows good weather ability. In summary, a practical reference for titanium metal matrix composite surfaces is provided, realizing superhydrophobicity and ice suppression functions and expanding its scenario applications.

Abstract Image

超疏水钛基复合材料表面的抗冰性和耐候性研究
超疏水表面具有广阔的应用前景,可显著扩展复合材料的综合性能,受到学术界和工业界的广泛关注。因此,本文展示了一种低成本和简单的方法,通过激光微织构制备类似水稻叶片的微/纳米结构表面阵列,用聚二甲基硅氧烷(PDMS)修饰,产生物理化学偶联织构疏水表面,然后研究表面在环境破坏下的耐冰性和耐风化性。经过数十次循环的混凝融霜和水的冲击,表面仍能保持疏水性,而表面的疏水性基团和结构在数百次剥离和摩擦下仍能保持疏水性,表现出良好的耐候性。综上所述,为钛金属基复合材料表面实现超疏水和抑冰功能,拓展其场景应用提供了实用参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信