Ling-Di Wang, Jing-Yun Gao, Li-Ying Duan, Hai-Feng Pan
{"title":"Verifying the Equivalence of Hawthorn Leaves Standard Decoction and Formula Granules by LC-MS and Oxidative Stress Test.","authors":"Ling-Di Wang, Jing-Yun Gao, Li-Ying Duan, Hai-Feng Pan","doi":"10.1093/chromsci/bmad089","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To verify the equivalence of hawthorn leaves standard decoction and formula granules.</p><p><strong>Methods: </strong>In this experiment, liquid chromatograph mass spectrometer (LC-MS) was used to examine the chemical composition of hawthorn leaves standard decoction and formula granules, separately. In addition, oxidative stress test was used to explore the antioxidant capacity of them.</p><p><strong>Results: </strong>71 chemical components were identified by LC-MS. Among them, 64 and 56 compounds were identified in the standard decoction and formula granules, respectively. There were a total of 49 common components, with no significant difference in content. Oxidative stress test showed that hawthorn leaves standard decoction and formula granules had no obvious toxicity to human umbilical vein endothelial cells. Compared with the model group, the same dose of hawthorn leaves formula granule and standard decoction could inhibit the secretion of lactate dehydrogenase and malondialdehyde (P < 0.05), and increase the content of superoxide dismutase (P < 0.01), with no statistically significant difference.</p><p><strong>Conclusions: </strong>There is no significant difference in the main active ingredients between the standard decoction and the formula granules, and the antioxidant activity in vitro is equivalent, providing an important theoretical basis for the further development of hawthorn leaves formula granules.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmad089","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To verify the equivalence of hawthorn leaves standard decoction and formula granules.
Methods: In this experiment, liquid chromatograph mass spectrometer (LC-MS) was used to examine the chemical composition of hawthorn leaves standard decoction and formula granules, separately. In addition, oxidative stress test was used to explore the antioxidant capacity of them.
Results: 71 chemical components were identified by LC-MS. Among them, 64 and 56 compounds were identified in the standard decoction and formula granules, respectively. There were a total of 49 common components, with no significant difference in content. Oxidative stress test showed that hawthorn leaves standard decoction and formula granules had no obvious toxicity to human umbilical vein endothelial cells. Compared with the model group, the same dose of hawthorn leaves formula granule and standard decoction could inhibit the secretion of lactate dehydrogenase and malondialdehyde (P < 0.05), and increase the content of superoxide dismutase (P < 0.01), with no statistically significant difference.
Conclusions: There is no significant difference in the main active ingredients between the standard decoction and the formula granules, and the antioxidant activity in vitro is equivalent, providing an important theoretical basis for the further development of hawthorn leaves formula granules.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.