Physiological stress improves stem cell modeling of dystrophic cardiomyopathy.

IF 4 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2024-06-01 Epub Date: 2024-02-05 DOI:10.1242/dmm.050487
Dominic E Fullenkamp, Alexander B Willis, Jodi L Curtin, Ansel P Amaral, Kyle T Dittloff, Sloane I Harris, Ivana A Chychula, Cory W Holgren, Paul W Burridge, Brenda Russell, Alexis R Demonbreun, Elizabeth M McNally
{"title":"Physiological stress improves stem cell modeling of dystrophic cardiomyopathy.","authors":"Dominic E Fullenkamp, Alexander B Willis, Jodi L Curtin, Ansel P Amaral, Kyle T Dittloff, Sloane I Harris, Ivana A Chychula, Cory W Holgren, Paul W Burridge, Brenda Russell, Alexis R Demonbreun, Elizabeth M McNally","doi":"10.1242/dmm.050487","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820750/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050487","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.

生理应激可改善营养不良型心肌病的干细胞建模。
心力衰竭会导致杜氏肌营养不良症(DMD),这种疾病是由肌营养不良蛋白的突变引起的,使质膜容易破坏。DMD患者的心肌细胞膜破裂产生与其他类型心肌损伤相似的血清损伤特征,释放肌酸酐激酶和肌钙蛋白同型体。人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)非常有用,但还有待改进。我们生成了DMD hiPSC-CMs,并将这些细胞置于等双轴机械应变中以模拟体内应力。与健康细胞相比,DMD hiPSC-CMs在10%菌株下培养2小时后对等双轴菌株表现出更大的敏感性。我们建立了一个基于适体的蛋白质图谱,分析了hiPSC-CMs在静止状态和应变状态下释放的蛋白质,并鉴定了hiPSC-CMs和DMD患者血清中机械应力诱导的蛋白质组之间的强相关性。我们将hiPSC-CMs暴露于重组膜联蛋白A6(一种蛋白质重封剂)中,发现DMD和对照hiPSC-CMs的生物标志物释放减少。因此,机械应变对hiPSC-CMs的应用产生了一个反映体内损伤概况的模型,为评估药物干预提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信