Mid-infrared second harmonic generation in p-type Ge/SiGe quantum wells: Toward waveguide integration

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Falcone , S. Calcaterra , G. Chesi , M. Virgilio , J. Frigerio
{"title":"Mid-infrared second harmonic generation in p-type Ge/SiGe quantum wells: Toward waveguide integration","authors":"V. Falcone ,&nbsp;S. Calcaterra ,&nbsp;G. Chesi ,&nbsp;M. Virgilio ,&nbsp;J. Frigerio","doi":"10.1016/j.photonics.2023.101217","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work we investigate a structure based on p-doped Ge/SiGe asymmetric-coupled quantum wells<span> (ACQW) that enables the second harmonic generation<span> in SiGe waveguide by double-resonant intersubband transitions (ISBTs). These transitions lead to χ</span></span></span><sup>(2)</sup> coefficients in the range 10<sup>4</sup>-10<sup>5</sup> pm/V, significantly higher compared to the one of conventional nonlinear materials. We developed a model for the integration of Quantum Wells (QWs) into the active region of the waveguide through an adiabatic taper. Furthermore, we modelled the second harmonic (SH) conversion efficiency as a function of the propagation length, under both non-phase matching and phase-matching conditions. Our work demonstrates that the SiGe ACQWs can be used in spectral ranges not covered by the majority of conventional non-linear crystals, while allowing for the ready-integration with the CMOS technologies.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101217"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441023001116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we investigate a structure based on p-doped Ge/SiGe asymmetric-coupled quantum wells (ACQW) that enables the second harmonic generation in SiGe waveguide by double-resonant intersubband transitions (ISBTs). These transitions lead to χ(2) coefficients in the range 104-105 pm/V, significantly higher compared to the one of conventional nonlinear materials. We developed a model for the integration of Quantum Wells (QWs) into the active region of the waveguide through an adiabatic taper. Furthermore, we modelled the second harmonic (SH) conversion efficiency as a function of the propagation length, under both non-phase matching and phase-matching conditions. Our work demonstrates that the SiGe ACQWs can be used in spectral ranges not covered by the majority of conventional non-linear crystals, while allowing for the ready-integration with the CMOS technologies.

p型Ge/SiGe量子阱中红外二次谐波的产生:迈向波导集成
在这项工作中,我们研究了一种基于p掺杂Ge/SiGe不对称耦合量子阱(ACQW)的结构,该结构通过双谐振子带间跃迁(isbt)在SiGe波导中产生二次谐波。这些转变导致χ(2)系数在104-105 pm/V范围内,与传统非线性材料相比显着更高。我们开发了一个通过绝热锥将量子阱(QWs)集成到波导有源区域的模型。此外,我们将非相位匹配和相位匹配条件下的二次谐波转换效率建模为传输长度的函数。我们的工作表明,SiGe acqw可用于大多数传统非线性晶体未覆盖的光谱范围,同时允许与CMOS技术进行预集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信