Mining toxicogenomic data for dose-responsive pathways: implications in advancing next-generation risk assessment.

IF 3.6 Q2 TOXICOLOGY
Frontiers in toxicology Pub Date : 2023-11-17 eCollection Date: 2023-01-01 DOI:10.3389/ftox.2023.1272364
A Rasim Barutcu, Michael B Black, Andy Nong
{"title":"Mining toxicogenomic data for dose-responsive pathways: implications in advancing next-generation risk assessment.","authors":"A Rasim Barutcu, Michael B Black, Andy Nong","doi":"10.3389/ftox.2023.1272364","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> While targeted investigation of key toxicity pathways has been instrumental for biomarker discovery, unbiased and holistic analysis of transcriptomic data provides a complementary systems-level perspective. However, in a systematic context, this approach has yet to receive comprehensive and methodical implementation. <b>Methods:</b> Here, we took an integrated bioinformatic approach by re-analyzing publicly available MCF7 cell TempO-seq data for 44 ToxCast chemicals using an alternative pipeline to demonstrate the power of this approach. The original study has focused on analyzing the gene signature approach and comparing them to <i>in vitro</i> biological pathway altering concentrations determined from ToxCast HTS assays. Our workflow, in comparison, involves sequential differential expression, gene set enrichment, benchmark dose modeling, and identification of commonly perturbed pathways by network visualization. <b>Results:</b> Using this approach, we identified dose-responsive molecular changes, biological pathways, and points of departure in an untargeted manner. Critically, benchmark dose modeling based on pathways recapitulated points of departure for apical endpoints, while also revealing additional perturbed mechanisms missed by single endpoint analyses. <b>Discussion:</b> This systems-toxicology approach provides multifaceted insights into the complex effects of chemical exposures. Our work highlights the importance of unbiased data-driven techniques, alongside targeted methods, for comprehensively evaluating molecular initiating events, dose-response relationships, and toxicity pathways. Overall, integrating omics assays with robust bioinformatics holds promise for improving chemical risk assessment and advancing new approach methodologies (NAMs).</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"5 ","pages":"1272364"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2023.1272364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: While targeted investigation of key toxicity pathways has been instrumental for biomarker discovery, unbiased and holistic analysis of transcriptomic data provides a complementary systems-level perspective. However, in a systematic context, this approach has yet to receive comprehensive and methodical implementation. Methods: Here, we took an integrated bioinformatic approach by re-analyzing publicly available MCF7 cell TempO-seq data for 44 ToxCast chemicals using an alternative pipeline to demonstrate the power of this approach. The original study has focused on analyzing the gene signature approach and comparing them to in vitro biological pathway altering concentrations determined from ToxCast HTS assays. Our workflow, in comparison, involves sequential differential expression, gene set enrichment, benchmark dose modeling, and identification of commonly perturbed pathways by network visualization. Results: Using this approach, we identified dose-responsive molecular changes, biological pathways, and points of departure in an untargeted manner. Critically, benchmark dose modeling based on pathways recapitulated points of departure for apical endpoints, while also revealing additional perturbed mechanisms missed by single endpoint analyses. Discussion: This systems-toxicology approach provides multifaceted insights into the complex effects of chemical exposures. Our work highlights the importance of unbiased data-driven techniques, alongside targeted methods, for comprehensively evaluating molecular initiating events, dose-response relationships, and toxicity pathways. Overall, integrating omics assays with robust bioinformatics holds promise for improving chemical risk assessment and advancing new approach methodologies (NAMs).

挖掘剂量反应途径的毒物基因组学数据:推进下一代风险评估的意义。
导读:虽然对关键毒性途径的针对性研究有助于生物标志物的发现,但对转录组学数据的公正和全面分析提供了补充的系统级视角。但是,在系统的情况下,这一办法尚未得到全面和有系统的执行。方法:在这里,我们采用综合生物信息学方法,使用替代管道重新分析44种ToxCast化学品的公开MCF7细胞TempO-seq数据,以证明该方法的功能。最初的研究侧重于分析基因标记方法,并将其与体外生物途径改变浓度从ToxCast HTS测定进行比较。相比之下,我们的工作流程涉及顺序差异表达、基因集富集、基准剂量建模以及通过网络可视化识别常见干扰通路。结果:使用这种方法,我们以非靶向方式确定了剂量反应性分子变化,生物学途径和出发点。关键的是,基于途径的基准剂量模型概括了顶点端点的起点,同时也揭示了单端点分析所遗漏的其他扰动机制。讨论:这种系统毒理学方法为化学暴露的复杂影响提供了多方面的见解。我们的工作强调了公正的数据驱动技术的重要性,以及有针对性的方法,以全面评估分子起始事件,剂量-反应关系和毒性途径。总体而言,将组学分析与强大的生物信息学相结合,有望改善化学品风险评估和推进新方法方法(NAMs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信