{"title":"Viewpoint-invariant exercise repetition counting.","authors":"Yu Cheng Hsu, Tsougenis Efstratios, Kwok-Leung Tsui","doi":"10.1007/s13755-023-00258-3","DOIUrl":null,"url":null,"abstract":"<p><p>Counting the repetition of human exercise and physical rehabilitation is common in rehabilitation and exercise training. The existing vision-based repetition counting methods less emphasize the concurrent motions in the same video, and counting skeleton in different view angles. This work analyzed the spectrogram of the pose estimation cosine similarity to count the repetition. Besides the public datasets. This work also collected exercise videos from 11 adults to verify that the proposed method can handle concurrent motion and different view angles. The presented method was validated on the University of Idaho Physical Rehabilitation Movements Data Set (UI-PRMD) and MM-fit dataset. The overall mean absolute error (MAE) for MM-fit was 0.06 with off-by-one Accuracy (OBOA) of 0.94. As for the UI-PRMD dataset, MAE was 0.06 with OBOA 0.95. We have also tested the performance in various camera locations and concurrent motions with 57 skeleton time-series videos with an overall MAE of 0.07 and OBOA of 0.91. The proposed method provides a view-angle and motion agnostic concurrent motion counting. This method can potentially use in large-scale remote rehabilitation and exercise training with only one camera.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13755-023-00258-3.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"1"},"PeriodicalIF":4.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00258-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Counting the repetition of human exercise and physical rehabilitation is common in rehabilitation and exercise training. The existing vision-based repetition counting methods less emphasize the concurrent motions in the same video, and counting skeleton in different view angles. This work analyzed the spectrogram of the pose estimation cosine similarity to count the repetition. Besides the public datasets. This work also collected exercise videos from 11 adults to verify that the proposed method can handle concurrent motion and different view angles. The presented method was validated on the University of Idaho Physical Rehabilitation Movements Data Set (UI-PRMD) and MM-fit dataset. The overall mean absolute error (MAE) for MM-fit was 0.06 with off-by-one Accuracy (OBOA) of 0.94. As for the UI-PRMD dataset, MAE was 0.06 with OBOA 0.95. We have also tested the performance in various camera locations and concurrent motions with 57 skeleton time-series videos with an overall MAE of 0.07 and OBOA of 0.91. The proposed method provides a view-angle and motion agnostic concurrent motion counting. This method can potentially use in large-scale remote rehabilitation and exercise training with only one camera.
Supplementary information: The online version contains supplementary material available at 10.1007/s13755-023-00258-3.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.